
A Technical Comparison of 
Borland ObjectWindows 2.0

and 
Microsoft MFC 2.5



Table of Contents
µExecutive Summary 1
Introduction 3
Overview 3
ANSI Compliance 4
Exception Handling 5
MFC Exception Handling 6
The MFC Exception Hierarchy 6
Problems with MFC Exception Handling 7
Class string 8
Templates 8
Summary 8
Message Handling 9
Response Tables 9
Command Enabling 10
Summary 11
The Document/View model 11
The ObjectWindows Approach 11
The MFC Approach 12
Summary 13
Special Window Types 13
Layout Windows 14
Toolbars 16
Status Bars 18
Tool Palettes 19
Summary 20
Dialog Box Controls 20
VBX Controls 21
VBXGen 23
Enhanced Controls 24
Transferring Data 25
Data Validation 26
Custom Validators 29
MDI 30
GDI Classes 32
Printer Support 34
Resources 35
Menus 35
Bitmaps 36
Metafiles 37
Fonts 38
Containers 39
ObjectWindows Containers 39
MFC Containers 40
Iteration 41
Iteration with MFC 41
Streamable Objects 42
The ObjectWindows Approach 42
The MFC Approach 44
Clipboard Encapsulation 45
Diagnostics and Debugging 45
OLE 2.0 Encapsulation 47
OLE 2.0 Visual Editing Classes 48
OLE 2.0 Automation Classes 48
Database Encapsulation 48
Accessing Data Sources 48
Database Forms 48
Conversion 49



MFC-ObjectWindows conversion guide 49
General Windows 49
Dialog boxes and Child Controls 52
GDI Operations 53
Containers 54
Persistence 57
Conclusion 57



Executive Summary

ObjectWindows 2.0 offers a rich set of classes that make writing Windows applications much easier.
The framework features a true object-oriented approach that is consistent, flexible, and extensible.  ObjectWindows is 
completely ANSI compatible, and fully exploits the powerful features of the C++ language such as multiple inheritance, 
templates, and exception handling.  These features dramatically increase reusability and help produce robust applications.
On the other hand, the Microsoft Foundation Classes (MFC) provide only a thin layer of abstraction over the Windows 
API.  The MFC framework is not built on a good object oriented design, and often makes use of C style constructs.  As a 
result, the MFC framework is often difficult to use, error prone, and doesn't promote code reuse.

                                                                      OWL2.0                                                            MFC 2.5
Object-oriented 
architecture

ObjectWindows 2.0 uses a high-level 
object oriented approach that offers 
more reusable objects and a more 
consistent, more robust framework. 

MFC does not have a good object oriented
design, and often requires the use of C 
style constructs.

ANSI compliance ObjectWindows is completely ANSI 
compatible and fully exploits standard 
C++ facilities including templates and 
exceptions to increase reusability and 
robustness.  

MFC has no support for ANSI standard 
templates or exceptions.

C++ exceptions Exception support in ObjectWindows is
ANSI compliant and applied thoroughly
and consistently throughout to give a 
simple, robust exception mechanism to 
users. 

MFC's exception support is clumsy, 
complex, non-standard and error-prone.

ANSI string class Borland supports the ANSI standard 
string class. 

Microsoft does not provide an ANSI 
string class, resulting in code which is 
non-portable and does not use ANSI 
exception handling.

C++ templates Borland supports ANSI standard 
templates to allow easier code reuse 
without giving up type safety.  

MFC doesn't use templates, resulting in 
code which is more error-prone and 
harder to re-use.

Special window types ObjectWindows includes a number of 
special window types that facilitate the 
design of Windows applications.   By 
having a richer set of classes, and more 
built-in functionality, ObjectWindows 
reduces the amount of code necessary 
to create modern user-interfaces.

MFC has no comparable support for 
layout windows, and its support for 
toolbars, status lines and palettes is 
significantly more difficult to use.  

Layout windows Constraint driven windows are 
important for configurability and 
flexibility because their size and shape 
are completely driven by a set of 
constraints that allow them to adapt as 
the controlling parameters change.  
ObjectWindows provides this through 
powerful Layout Windows.

MFC has no comparable capability.

Toolbars ObjectWindows provides truly object-
oriented toolbar classes, allowing more 
configurable toolbar-based application.

MFC does not use an object-based 
approach — it simply uses bitmaps.  This 
makes it very hard to provide 
programmatic control over toolbars.



Status bars ObjectWindows provides an object-
oriented status bar class that results in a
simpler yet much more customizable 
status bar in applications.  

MFC uses a limited and rigid C-based 
approach to status bars.

Tool palettes ObjectWindows uses objects of small 
size built up into a class hierarchy 
supporting tool palettes that allows 
features to be changed with minimal 
code changes.  

MFC exposes a very complex and error-
prone approach to tool palettes.

Dialog box controls ObjectWindows treats dialog boxes and
child controls just as any other object. 

In MFC, use of these objects requires 
additional overhead through the use of  
"helper" functions.

VBX controls ObjectWindows takes a very consistent 
approach to controls — VBX or 
otherwise.  

MFC requires special VBX handling.  In 
addition, MFC provides no drag-and-drop 
support for VBX controls.

3D Controls ObjectWindows fully supports 
Borland's own 3D controls as well as 
those provided by Microsoft.  

MFC does not support either Borland's 3D
controls, or those provided by Microsoft.

Data transfer ObjectWindows provides very simple 
straightforward mechanisms to transfer 
data from dialogs to the underlying 
object.  

MFC's DDX data exchange mechanism is 
much more complex and therefore harder 
to use correctly.

Data validation ObjectWindows uses a very object-
oriented approach to data validation 
where a validator object is attached to a
control; no extra code is needed 
because the validator handles it. 

In MFC data validation is handled 
through a series of global functions and 
validation only happens during data 
exchange.  This also makes MFC data 
validation dangerous and crash-prone.

GDI support ObjectWindows provides a rich set of 
classes that support Windows graphics 
calls.  The object oriented nature of 
ObjectWindows provides a great deal of
flexibility and scalability.

MFC provides a very thin layer over GDI.
This makes it difficult to use GDI in a 
true object oriented manner.

Printer support ObjectWindows makes it easy to add 
printer support to an application 
regardless of the type of information 
being displayed.  Printer support is very
easy to use and is quite flexible 

Printer support in MFC is difficult to use 
and is very restrictive.

Menus ObjectWindows has very powerful 
capabilities when dealing with menus.  
The key concept is menu merging in 
which ObjectWindows takes care of the
details for you 

MFC does not contain support for 
sopisticated menu handling such as menu 
merging.

Bitmaps ObjectWindows provides classes for 
device independent bitmaps, supports 
clipboard operations on bitmaps and 
supports reading and writing bitmaps to
files. 

MFC supports no advanced bitmap 
features such as reading and writing 
bitmaps to files 

Metafiles Windows metafiles — important 
efficient graphics storage objects — are
encapsulated in ObjectWindows 

MFC provides no support for  metafiles.



Fonts ObjectWindows demonstrates its clean, 
object-oriented architecture in its 
support for Windows fonts.  Simple 
constructors with default arguments do 
all the work. 

In MFC creating font objects is overly 
complex.

Containers ObjectWindows really shows its object-
oriented strength on containers.  
Important concepts like ownership, 
cleanup on deletion and iteration are 
key to ObjectWindows implementation 
that uses templates extensively. 

The BIDS classes provided by 
ObjectWindows include all the 
fundamental ones used in the object-
oriented community.  There are 11 
basic types included.

MFC's containers are C-style and do not 
use templates and are thereby quite 
inflexible.  Only 3 basic types are 
provided.  Non-standard terminology 
inhibits understanding and 
communication.  There is no type-safety 
and ownership is not enforced making 
memory leaks common occurrences.

OLE 2.0 encapsulation Currently under development. MFC 2.5 encapsulates OLE 2.0.  

Database encapsulation Currently under development. MFC 2.5 encapsulates ODBC. 

Introduction

Quick Summary: This guide provides a detailed technical comparison of Borland's ObjectWindows 2.0 application 
framework and Microsoft's MFC library.

When choosing a C++ development environment, the selection of an application framework or class library can play an 
important role in determining the overall productivity in developing new applications.  After all, it's the reusable classes 
in the application framework that provide much of the leverage of code reusability that C++ offers.  

Both Borland C++ 4.0 and Microsoft Visual C++ 1.5 include an application framework.  Borland C++ 4.0 includes 
ObjectWindows 2.0, an application framework that focuses on providing high-level objects to reduce the overall code 
required to build sophisticated, robust applications.  Microsoft provides the Microsoft Foundation Classes, known as 
MFC.  

This document provides a detailed technical comparison of the ObjectWindows 2.0 application framework and 
Microsoft's MFC 2.5 library.  This comparison will show how ObjectWindows more fully exploits the powers of C++ to 
provide greater code reusability, more high-level objects, easier development and a more robust set of classes.  

The following areas are discussed in detail:

· ANSI compliance
· Message handling
· Document/View model
· Dialog box controls
· GDI classes
· Printer support
· Resources
· Containers
· Streamable objects
· Diagnostics and debugging
· OLE 2.0 encapsulation



Overview

Quick Summary: ObjectWindows 2.0 uses a high-level object-oriented approach that offers more reusable objects and a 
more consistent, more robust framework.  

The first version of ObjectWindows application framework was introduced in 1991 and a great number of developers 
embraced the product as a better way to program C++ Windows applications.  The ObjectWindows approach was unique 
since it focused on providing high-level objects that dramatically simplified Windows programming.  ObjectWindows 
harnessed the power of C++ to eliminate many of the tedious details of Windows programming.  As a result, Windows 
programming was opened up to thousands of developers who wanted a more productive way to build Windows 
applications.  At present, there are over 300,000 ObjectWindows users, making it the  most popular application 
framework for Windows development.

ObjectWindows 2.0 is Borland's next generation application framework, and is the result of a substantial expansion of the
vision that began with ObjectWindows 1.0.  The four major design goals that are reflected in the ObjectWindows 
architecture are:
· Make it easy to develop professional applications
· Make it easy to migrate between 16 and 32 bit Windows
· Take advantage of C++ power to increase programmer productivity
· Provide a strong foundation for component architectures 

ObjectWindows 2.0 expands the coverage of the Windows API to provide high-level object-oriented encapsulations for 
GDI graphics and printing as well as complete support for document/view architecture.  The "high-level" approach that 
ObjectWindows uses means that developers have a richer set of objects to draw from including support for sophisticated 
user interface elements such as speedbars, status lines, palettes and print preview.

ObjectWindows uses the full power of C++, including facilities such as multiple inheritance and polymorphism to allow 
users to derive new classes easily and with few restrictions.  The result is a framework that is consistent in design and that
hides  many of the subtle complexities of programming for Windows, such as automatic GDI object creation and disposal.

MFC, on the other hand, uses a simple hierarchy, rooted at the class CObject. The hierarchy is only 4 classes deep, and 
makes little use of polymorphism — where a single interface is used over and over for similar things — , making MFC 
harder to learn and use.  As a result, MFC is inordinately complex, in many cases providing little or no encapsulation of 
Windows details. And there are many issues in MFC which appear to be rather arbitrary, resulting in a somewhat 
inconsistent design depending on rigid data layouts. 

Because ObjectWindows is more object oriented than MFC, it provides a stronger foundation for code reusability and is 
easier to learn.  ObjectWindow's underlying use of exception handling makes it a far more robust framework suitable for 
every day and mission critical tasks.  And, ObjectWindows provides a smooth migration to cross platform development 
via ObjectWindows for AppWare.

The following sections provide a detailed technical comparison of OWL and MFC.

ANSI Compliance

Quick Summary:  ObjectWindows is completely ANSI compatible and fully exploits standard C++ facilities including 
templates and exceptions to increase reusability and robustness.  MFC has no support for ANSI standard templates or 
exceptions.

ObjectWindows 2.0 leverages recent ANSI C++ additions.  The main features are the use of template based response 
tables, standardized exception handling, the new standard class string, and templates, as described in the following 
sections.  Use of templates and exception handling provides unequaled type safety and error handling capabilities.  

ObjectWindows 1.0 made use of a C++ language extension -- called Dynamic Dispatch Virtual Tables (DDVTs) -- to 
bind Windows messages to C++ member functions. DDVTs represented an elegant solution to message binding, but were 
not portable to other ANSI-compliant C++ compilers. Borland has dropped the use of DDVT functions in favor of a new 



technique utilizing structures known as response tables that are fully ANSI compliant. MFC uses a similar technique, 
based on what are called message maps. See the section named Message Routing for a comparison of response tables with
message maps.

Exception Handling
Quick Summary: Exception support in ObjectWindows is ANSI compliant and applied thoroughly and consistently 
throughout to give a simple, robust exception mechanism to users.  MFC's exception support is clumsy, complex, non-
standard and error-prone.

Exceptions allow programs to treat unusual or unexpected situations in a consistent and predictable manner locally at the 
sight of the unexpected event. Programmers spend most of their time on the normal case as they should.  When a problem
is detected at runtime, a function can throw an exception, which results in a non-local jump to another function that has 
established a handler for the type of exception thrown. Programs can throw exceptions which are bona fide C++ objects, 
which can then be caught by value or reference. Catching by reference allows polymorphic handling for exceptions that 
are part of a larger exception class hierarchy.

ANSI standard exception handling involves the introduction of three keywords into the C++ language: try, throw and 
catch, each with their own syntax. A function that executes code that may fail encloses the code in a try block, like this:

try {
  // do something
}
catch(xmsg& msg) {
  // use the string in msg to display an error message
}

Following the try block there are one or more catch blocks, each distinguishable by the exception type handled. The try 
block can contain any valid C++ expressions.  Exceptions can be thrown by functions called within the try block, as well 
as in the try block itself.  To throw an exception, the keyword throw is used like this:

// we ran out of disk space!
throw (xmsg("Disk Full!"));

The compiler locates the exception handler (if any) for the exception, and passes control to it, after unwinding the stack 
and destructing local objects that went out of scope in the process.

Uncaught exceptions are handled automatically. C++ defines a number of standard exceptions.  These, and the standard 
OWL exceptions, are shown in the following figure:

µ §

Figure 1 - The standard C++ and ObjectWindows 2.0 exceptions.

All the exceptions derived from TXOwl have default handlers in ObjectWindows, but applications can provide their own 
handlers for special cases. The default handlers typically display an error message and terminate the application. The 
handling of exceptions requires special intervention from the compiler, because non-local jumps can be performed, 
causing the stack to be unwound. During the process of stack cleanup, local objects whose stack is unwound must be 
destructed automatically, and the correct exception handler must be located and control given to it. Local objects must be 
destructed in the reverse order of construction, as is the case when local objects go out of scope normally.

MFC Exception Handling

Exception handling in MFC 2.5 is through the use of non-standard C style macros.  MFC does not support ANSI standard 
exception handling, and as a result, it is limited, and awkward to use.

Although there are macros that use some of the same names as the ANSI keywords, their use is different. For example the
CATCH macro is used like this:



CATCH (CFileException, theException) {
  if (theException->m_cause == CFileException::fileNotFound)
    ...
}
END_CATCH

The CATCH macro takes two parameters. The first specifies a type, the second is a pointer to an object of that type. This 
syntax has little in common with that of the standard catch keyword.

The MFC Exception Hierarchy

MFC defines a class hierarchy of exceptions as shown in the following figure:

µ §

Figure 2 - The MFC exception class hierarchy.

The THROW macro is not used in user programs. To throw an exception, you must use one of the following MFC 
functions:

void AFXAPI AfxThrowMemoryException();
void AFXAPI AfxThrowNotSupportedException();
void AFXAPI AfxThrowArchiveException(int cause);
void AFXAPI AfxThrowFileException(int cause, LONG lOsError = -1);
void AFXAPI AfxThrowResourceException();
void AFXAPI AfxThrowUserException();

Using these macros makes it harder to deal with user defined exceptions.  The THROW_LAST macro must be used to re-
throw an exception from inside CATCH blocks.

Problems with MFC Exception Handling

Apart from the complexity imposed by MFC exception handling such as the confusion between macros and standard 
ANSI keywords and the combined use of macros and function calls, there are several other major problems with MFC 
exception handling.

1- You can't extend the MFC exception hierarchy by simply deriving your own class from class CException. To throw an 
application-specific exception, you must throw a CUserException, using the MFC function AfxThrowUserException(). 
There is no way to distinguish one user exception from the other.

2- Exceptions thrown in class constructors will cause memory leaks because the matching destructor is not automatically
called. This completely precludes the throwing of exceptions inside constructors, a common usage with ANSI C++ 
exception handling.

3- Local objects are destroyed, but not destructed during the process of stack unwinding. In other words, after a function 
ends, any local objects disappear, because the place they are stored on the stack goes away.  But the destructors for 
these local objects are not called.  Thus, no clean up is executed.  This can result in memory leaks, bad pointers in 
lists, file handles that are not closed, and many other critical and hard to detect problems.

4- The exception hierarchy is not consistent. For example, CArchiveException is not derived from CFileException, even 
though CArchive objects deal exclusively with CFile objects.

5- Interface specifications for exceptions are not supported. The standard function unexpected() is not supported. 
According to the proposed ANSI C++ draft, a function can declare the types of exceptions that it, or any functions 
called by it, can throw. If any other exception types are thrown, the function unexpected() is called.



6- Too complex. Microsoft has attempted to support limited exception handling through a plethora of macros and non-
standard functions.  The end result is confusing and non-portable.

Class string
Quick Summary: Borland supports the ANSI standard string class; Microsoft does not use this standard, resulting in code 
which is non-portable and does not use ANSI exception handling.

The X3J16 ANSI committee approved the new standard class string, designed to support the most common string 
operations, with automatic memory allocation and management. Class string has several overloaded operators, such as 
operator+=, operator== and operator=, to facilitate common string operations.

MFC doesn't support the ANSI string class , using in its place a class called CString, which has less functionality than 
string. One of the biggest differences between string and CString is that the former has the ability to throw standard C++
exceptions, while the latter doesn't.

Templates
Quick Summary: Borland supports ANSI standard templates to allow easier code reuse without giving up type safety.  
MFC doesn't use templates, resulting in code which is more error-prone and harder to re-use.

The draft C++ standard calls for the support of parameterized types, known as templates. Both functions and classes may 
be created using templates, allowing users to create specific function and class implementations for a given series of data 
types. Containers are good examples of where template classes are convenient. Using a template class, you can designate 
a generic container, such as a linked list, that handles objects of some generic type T. The advantage of using templates is
that the compiler creates a complete typed class based on T, and guarantees type-safety, since it knows what types are 
actually being handled.

MFC doesn't support templates, as proposed by the ANSI committee. Generic classes, such as containers, deal with void* 
types, forcing you to use typecasting. The use of typecasts not only places the burden for type identification on the user, 
but also opens the door to bugs, caused by incorrect type conversions.  In effect, by not using templates, you must give up
the benefit of strong type checking.

Summary

Borland's ObjectWindows 2.0 takes full advantage of ANSI standard C++ features including exceptions, templates and 
ANSI strings.  These features make it easier to write code that is robust, reusable and portable.  Because MFC does not 
support these facilities it is significantly harder to write reusable code and the resulting code is not only harder to use, it's 
non-portable.  

Message Handling

Quick Summary:  Message handling in ObjectWindows is easier to write, more flexible, and safer than MFC since it fully 
supports the use of multiple inheritance and is template based.  

Windows programming poses special problems for C++ class hierarchies.  Windows sends messages to a C callback 
function, where the message is decoded and processed in accordance with the message type. C++ class libraries for 
Windows must be able to direct Windows messages to C++ member functions, and provide a conversion of the generic 
WPARAM and LPARAM parameters into types that are message dependent -- a process known as message cracking.

Response Tables
Quick Summary: Both ObjectWindows and MFC use a message dispatch table mechanism to map Windows messages to 
the correct C++ member function.  ObjectWindows uses a C++ standard approach that is clean and simple based on C+



+ templates.  MFC's approach is non-standard and awkward and non type-safe.  MFC is further limited to single 
inheritance.

ObjectWindows 2.0 handles Windows messages through entities known as response tables. These tables provide a 
connection between a Windows message and a C++ member function. ObjectWindows 1.0 accomplished this message 
mapping using virtual dispatch tables (DDVTs) and functions. Although the technique was elegant, it used a proprietary 
C++ language extension and was not portable. The new response tables are fully portable to ANSI-compliant C++ 
compilers, and provide additional flexibility.  To use response tables with a window, you must declare the table in the 
window's header file, and define the table in the source file. Here is how a response table is declared in a sample window 
class:

class TMyWindow : public TFrameWindow {
  public:
    // ...
    void EvTimer(UINT);
    void CmAbout();
  DECLARE_RESPONSE_TABLE(TMyWindow);
};

The definition of the response table is put in the source file, and connects Windows messages to member functions of 
class TMyWindow. The definition would look like this:

DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)
  EV_WM_TIMER,
  EV_COMMAND(CM_ABOUT, CmAbout),
END_RESPONSE_TABLE;

ObjectWindows 2.0 supports all the type of messages that can occur in Windows, i.e. Windows messages like 
WM_PAINT, user commands sent through WM_COMMAND messages, notification messages, etc. Standard Windows 
messages are mapped automatically to ObjectWindows member functions, so you don't have to specify their name on the 
response table. For example, the WM_TIMER message uses the EV_WM_TIMER macro to connect the message with the
EvTimer() member function. For user commands, you must specify the member function name, using the 
EV_COMMAND macro.

MFC 2.5 uses an approach that is similar to ObjectWindows, but calls its message dispatching tables message maps 
instead of response tables. Different macros are involved, but the effect is the same. The code fragment below shows how
the class CMyWindow would be implemented under MFC 2.5. 

class CMyWindow : public CFrameWnd {
  public:
    // ...
    void OnTimer(UINT);
    void OnAbout();
    DECLARE_MESSAGE_MAP()
};

BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
ON_WM_TIMER()
ON_COMMAND(CM_ABOUT, OnAbout)

END_MESSAGE_MAP()

Message maps use an awkward syntax. Their declaration resembles a member function declaration, but has no semicolon 
at the end. Their definition resembles a struct declaration somewhat, but the individual map entries have no comma 
between them and the END_MESSAGE_MAP macro has no trailing semi-colon. Borland implemented response table so 
that their syntax is more in line with C++. The declaration DECLARE_RESPONSE_TABLE has a semicolon at the end. 
The definition DEFINE_RESPONSE_TABLE uses commas to separate the table entries, and the table ends with a semi-
colon. There is another interesting point about message maps: notice how the DECLARE_MESSAGE_MAP macro 
doesn't take any parameters. MFC relies on an undocumented non-standard compiler extension to avoid having to know 
the name of the class being dealt with in a message map.

But apart from esthetics, the most limiting factor of message maps is that they don't support multiple inheritance. If you 
have a class that is derived from multiple base classes, you can only reference one of the base classes in the 
BEGIN_MESSAGE_MAP macro. The base classes you leave out will not be used during MFC's message dispatching, 
unless you add code of your own.



In ObjectWindows, response tables fully support multiple inheritance, thereby giving programmers greater flexibility in 
designing their applications.  

Command Enabling
Quick Summary: ObjectWindows and MFC both have mechanisms to allow the response tables to control menu and 
toolbar items as focus changes.

The ObjectWindows response tables function in a way similar to the MFC message maps. Where ObjectWindows and 
MFC differ is in the way these tables are used by the application frameworks code. ObjectWindows has code to 
automatically enable or disable menu and toolbar items based on the contents of the response table of the active window. 
When the focus moves to a new window, ObjectWindows checks the response tables of  the windows that are in the view 
chain. For each item on the menu and toolbars, ObjectWindows checks the response tables to see whether a handler is 
defined. If so, the item is painted normally, otherwise the item is grayed out and disabled. No code is necessary from the 
application.

MFC handles things in a similar fashion. For each item on the menu and toolbar, MFC checks the message maps in the 
view chain, looking for either a handler or an ON_UPDATE_COMMAND_UI entry that takes the item's ID as a 
parameter. If an ON_UPDATE_COMMAND_UI  entry is found, MFC calls the member function bound to it, passing it a 
CCmdUI* parameter. The function can then use the argument to enable or disable the menu or toolbar item. If no 
ON_UPDATE_COMMAND_UI entry is found, MFC enables a menu item if there is handler for it, otherwise it grays the 
menu item out. A short example may be helpful. Assume your window has a menu item called Edit | Select All, with the 
ID IDM_SELECTALL. By creating the following entry in the window's message map:

BEGIN_MESSAGE_MAP (CMyWindow, CFrameWnd)
    ON_UPDATE_COMMAND_UI(IDM_SELECTALL, OnUpdateSelectAll) 
    ON_COMMAND (IDM_SELECTALL, OnSelectAll)
END_MESSAGE_MAP ()

The member function OnUpdateSelectAll() would be called when CMyWindow became the active window. The CCmdUI* 
parameter will point at the menu or toolbar entity the MFC wants to get the status of. If CMyWindow wants to disable the 
Edit | Select All menu command, the code for OnUpdateSelectAll() might look like this:

afx_msg void CMyWindow::OnUpdateSelectAll(CCmdUI* pCmdUI)
{
  pCmdUI->Enable(FALSE);
}

ObjectWindows has a feature similar to let programs selectively enable or disable menu/toolbar entries. The feature is 
based on EV_COMMAND_ENABLE() entries in the window's response table. Before displaying a Window, 
ObjectWindows checks the response tables for the windows in the view chain for  EV_COMMAND_ENABLE() entries 
that are mapped to menu and toolbar IDs. If it finds any, it calls the bound handler functions, passing to them a 
TCommandEnabler& parameter. Here is how the response table might be defined for class TMyWindow:

DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)
  EV_COMMAND(IDM_SELECTALL, CmSelectAll),
  EV_COMMAND_ENABLE(IDM_SELECTALL, CmEnableSelectAll),
END_RESPONSE_TABLE;

The code for CmEnableSelectAll() might look like this:

void TMyWindow::CmEnableSelectAll(TCommandEnabler& CommandEnabler)
{
  CommandEnabler.Enable(... anything to select...)
}

The TCommandEnabler& parameter references the menu or toolbar item that ObjectWindows is inquiring about. 



Summary

Both ObjectWindows and MFC fully support message handling .  However, only ObjectWindows gives developers 
complete flexibility in allowing the use of multiple inheritance.  This is important for sophisticated applications which 
may have multiple command sets enabled at different times.  

The Document/View model

Quick Summary: ObjectWindows makes it easier to create applications based on the document/view model by using 
standard ANSI templates.  This also eliminates common errors that can happen using MFC's approach.

A new feature added in ObjectWindows 2.0 is the Document / View model, which provides greater power and flexibility. 
In the document/view model, the management of a window's data is treated as a separate task from the visual presentation
of the data. MFC 2.5 also supports the Document/View model, as discussed below. 

The ObjectWindows Approach
Quick Summary: Separating the data from its presentation is an important abstraction concept.  It allows multiple views 
on the same data.  ObjectWindows does not require that the view object be a window and viewers can be DLLs.

In ObjectWindows 2.0, objects derived from TDocument are used to manipulate a window's data, and a class derived from 
TView displays the data on the screen. One immediate benefit of the separation of documents from views is that you can 
create multiple viewers for the same data. For example, you could have viewers that display document data in different 
formats. You might have two viewers for TIF (tagged image format) files. One could show the files in text format, the 
other could display the file images as bitmaps.

An important difference between CView and TView is that while CView is derived from CWnd, and is thus a window, 
TView is not derived from TWindow. TView is instead derived from TEventHandler, so it can be used to represent non-
window items, such as OLE links. 

Another difference is that ObjectWindows supports viewers that are linked both statically and dynamically. With DLL 
viewers, you can add new viewers to an application without adding any additional code.  ObjectWindows simplifies the 
use of viewers and documents with drag and drop. For applications created with AppExpert, you can add a new viewer by
simply dragging and dropping a viewer DLL into the application, with out even recompiling the code.  The example 
program STEP12 — that ships with Borland C++ 4.0 —  provides an example of how to do this. 

Document objects are associated with View objects. The association is created through a template class, called by the 
document template, and you can create multiple instances of these templates. Each instance can specify details such as 
the default directory to search for the document files and what default file suffix to use with the documents.  Here is how 
a document template is declared and defined:

DEFINE_DOC_TEMPLATE_CLASS(THexDocument, THexView, THexTemplate);
THexTemplate MyTemplate("Hex File Viewer", "*.*", "C:\\", 
                        *.hex", dtAutoDelete);

The macro DEFINE_DOC_TEMPLATE_CLASS declares the document template class THexTemplate, and tells it to 
associate the THexDocument class with the THexView class. The next line instantiates an object of type THexTemplate, 
called MyTemplate. This document template object is passed a number of parameters. The first is a string description, 
which ObjectWindows displays in a floating popup menu when the File | New command is selected. The second is a filter
used to display files in the File | Open dialog box managed automatically by ObjectWindows. The third parameter is the 
default directory of the document files, the fourth is the default extension to add to file names, and the last parameter is a 
flag telling ObjectWindows how to handle views and documents. The dtAutoDelete flag tells ObjectWindows to delete a 
document object when its last associated view is closed.

All the document template instances in your program are handled by a document manager object, attached to the 
application object. With ObjectWindows, you can create two kinds of applications: 



1- Simple applications, in which each window handles its data and its presentation.
2- Document/View applications, which use documents, views and template classes.

The derived class is responsible for creating the manager in the InitMainWindow() member function, as shown in the 
following code fragment.

void TMyApp::InitMainWindow()
{
  DocManager = new TDocManager(dmMDI);
}

You tell the manager whether you want an MDI or SDI application, and from that moment on all the details are handled 
automatically for you, eliminating any possibility of errors.  

The MFC Approach
Quick Summary: MFC is much more rigid and limited than ObjectWindows due to its lack of template use and because 
application objects must manage associations themselves.

Although MFC 2.5 supports the document/view model, its implementation is different in a number of areas. You must 
create document classes derived from CDocument, and view classes derived from CView, but that's where the similarity 
ends. Rather than use template classes to manage views and documents, MFC uses two classes: CSingleDocTemplate and 
CMultiDocTemplate. These classes do not use C++ templates, despite what their names suggest.  There is no stand-alone 
document manager in MFC. The application object itself manages the document/view associations. You add associations 
using the member function CApplication::AddDocTemplate(), which must be called in CApplication::InitInstance(), like this:

BOOL CMyApp::InitInstance()
{
  // ...

  AddDocTemplate(new CMultiDocTemplate(IDR_MYFRAME,
RUNTIME_CLASS(CHexDocument),
RUNTIME_CLASS(CHexFrame),
RUNTIME_CLASS(CHexView)) );

// ...
}

The comparable ObjectWindows code is much simpler:

THexTemplate MyTemplate("Hex File Viewer", "*.*", "C:\\", 
                        *.hex", dtAutoDelete);

The MFC code allows you to accidentally add both SDI and MDI document/view associations to the same application. In 
ObjectWindows, you make the SDI/MDI decision only once, when the document manager is created. After that, the 
system knows what kind of structure it is working with.

The first parameter passed to CMultiDocTemplate is the ID of the menu to associate with class CHexView. ObjectWindows 
has built-in support for menus, making it unnecessary for you to have to pass this information to the document manager. 
See the section entitled Menus for further information.

The remaining parameters passed to CMultiDocTemplate use the macro RUNTIME_CLASS, which essentially extracts 
fragments of classes for subsequent use. All of this unnecessary overhead could have been avoided through support for 
standard C++ templates.

Summary

Although both ObjectWindows and MFC support the document/view model, the ObjectWindows support is easier to use 
and less error-prone.  



Special Window Types

Quick Summary:  ObjectWindows includes a number of special window types that facilitate the design of Windows 
applications.    MFC has no comparable support for layout windows, and its support for toolbars, status lines and palettes
is significantly more difficult to use.  By having a richer set of classes, and more built-in functionality, ObjectWindows 
reduces the amount of code necessary to create modern user-interfaces.

Windows applications today use a number of embellishments that have almost become standard features. Most of these 
features are supported through special windows that make programs easier to use and understand. Among the most 
common of these windows are toolbars, status bars and palettes. ObjectWindows 2.0 provides full support for all of these 
windows, while MFC provides limited support. The following sections will discuss the various window types in more 
detail.

Layout Windows
Quick Summary: Constraint driven windows are important for configurability and flexibility because their size and shape 
are completely driven by a set of constraints that allow them to adapt as the controlling parameters change.  
ObjectWindows provides this through powerful Layout Windows while MFC has no comparable capability.  Layout 
windows are particularly important for international applications.

Status bars, toolbars and palettes share common features: they all are positioned in a certain way with respect to their 
parents.  The ability to position one window based on some attribute of the parent window is useful in many cases. 
Consider a window that displays a clock in its lower right corner. If the clock must occupy only a small proportion of the 
parent window's client area, then it must be able to compute not only its position, but also its size based on the parent's 
size. ObjectWindows 2.0 has a new class called TLayoutWindow that allows you to attach positioning and sizing 
constraints to a window . These constraints are handled internally as a set of linear equations, which ObjectWindows 
solves to determine how to display a window.

Suppose you have a window in which two child windows need to be positioned in a constrained way. One window needs 
to be positioned at the lower right of the parent window, and have a size that is a certain fraction of the parent's size. The 
other window might need to be positioned right next to the first child window. The following code shows how all this 
could be accomplished with ObjectWindows.

#include <owl\framewin.h>
#include <owl\applicat.h>
#include <owl\layoutwi.h>
#include <owl\color.h>

class TColorWindow : public TWindow {
public:
  TColorWindow(TWindow* parent, TColor color)

 : TWindow(parent, "") {
SetBkgndColor(color);
Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE;

 }
};

class TMyWindow: public TLayoutWindow {
protected:
  TWindow* w1;
  TWindow* w2;
  void SetupWindow();
public:
  TMyWindow(TWindow* parent)

 : TLayoutWindow(parent, 0) {
 Attr.Style |= WS_BORDER;
 w1 = new TColorWindow(this, TColor::LtRed);
 w2 = new TColorWindow(this, TColor::LtCyan);

  }
};

void TMyWindow::SetupWindow()
{



  TLayoutWindow::SetupWindow();

  TLayoutMetrics metrics;

  // layout constraints for right window
  metrics.X.Set(lmLeft, lmPercentOf, lmParent, lmRight, 60);
  metrics.Y.Set(lmTop, lmPercentOf, lmParent, lmBottom, 60);
  metrics.Width.Set(lmRight, lmPercentOf, lmParent, lmRight, 95);
  metrics.Height.Set(lmBottom, lmPercentOf, lmParent, lmBottom, 95);

  SetChildLayoutMetrics(*w1, metrics);

  // layout constraints for left window
  metrics.X.Set(lmRight, lmSameAs, w1, lmLeft);
  metrics.Y.Set(lmTop, lmSameAs, w1, lmTop);
  metrics.Width.Absolute(100);
  metrics.Height.Absolute(20);

  SetChildLayoutMetrics(*w2, metrics);

  Layout();
}

class TLayoutApp : public TApplication {

public:
  void InitMainWindow() {

 MainWindow = new TFrameWindow(0, "Using Layout Windows",
                                      new TMyWindow(0) );

 }
};

int OwlMain(int, char**)
{
  return TLayoutApp().Run();
}

Listing 1 - A short example using TLayoutWindow.

The code in listing 1 produces a window that looks like this:

 

Figure 3 - The constrained child windows produced by the code in Listing 1.

The child window on the right of figure 3 is constrained with the code:

  metrics.X.Set(lmLeft, lmPercentOf, lmParent, lmRight, 60);
  metrics.Y.Set(lmTop, lmPercentOf, lmParent, lmBottom, 60);
  metrics.Width.Set(lmRight, lmPercentOf, lmParent, lmRight, 95);
  metrics.Height.Set(lmBottom, lmPercentOf, lmParent, lmBottom, 95);

so its width and height are 35% of the parent window's width and height. The second child window is positioned to the 
immediate left of the first window, and is constrained to have a width of 100 pixels and a height of 20 pixels. The 
window is constrained using the code:

  metrics.X.Set(lmRight, lmSameAs, w1, lmLeft);
  metrics.Y.Set(lmTop, lmSameAs, w1, lmTop);
  metrics.Width.Absolute(100);
  metrics.Height.Absolute(20);

where the X and Y constraints use the first child window as the reference window. Because only the first child window's 
size is related to the parent window's, resizing the parent window causes the first child to be resized, but not the second 
one.

Layout windows allow you to specify different combinations of position and size constraints. For example you can make 
the height of a window a function of the width, or vice versa, or the height/width or the window a function of a parameter
of the parent window. Class TLayoutWindow is a base class used for the status bars, toolbars and tool boxes used in 



ObjectWindows. 

MFC has no equivalent class to TLayoutWindow.  As a result, developers must code from scratch the logic to reposition 
child windows, toolbars or palettes manually.  

Layout windows are particularly important for international applications, because they allow dynamic resizing of dialogs 
and windows during translation of user interfaces.

Toolbars
Quick Summary: ObjectWindows provides truly object-oriented toolbar classes.  MFC does not use an object-based 
approach — it just uses bitmaps.  This makes it very hard to provide programmatic control over toolbars and means 
ObjectWindows allows a much more configurable toolbar-based application.

ObjectWindows 2.0 has a built-in class to support toolbars. The class is called TControlBar, is derived from 
TLayoutWindow, and displays itself right under the menu window's menu bar. MFC has a class called CToolBar that also 
displays a toolbar under the menu bar, but the similarity ends there. Toolbars are designed to hold buttons. The buttons in 
ObjectWindow's TControlBar are derived from the ObjectWindows class TGadget, a class that supports most of the 
functionality needed by toolbar buttons. ObjectWindows gives you full programmatic control over the placement, sizing, 
and functions of toolbar buttons. To create a toolbar, you only need a few lines of code. Consider the sample toolbar 
shown in figure 4.

 

Figure 4 - A sample toolbar created with ObjectWindows.

The code required to create this toolbar is the following:

  TControlBar* cb = new TControlBar(parent, direction);
  cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW));
  cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN));
  cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));
  cb->Insert(*new TSeparatorGadget(6));
  cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT));
  cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));
  cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));

You can control the spacing and positioning of toolbar buttons at runtime. Toolbars and toolbar buttons are handled the 
same way dialog boxes and child controls are, from the programmer's perspective. ObjectWindows automatically disables
buttons for which there is no handler in the response tables along the view chain. 

In contrast, MFC doesn't use objects at all in its toolbars -- all you specify is a series of bitmaps. MFC handles the 
individual buttons by itself, making it very difficult for you to customize a standard behavior. You have no programmatic 
control over the positioning and spacing of the items on the toolbar. To make changes, you must develop different sets of 
toolbar bitmaps, and switch between them. Consider the toolbar shown in figure 5.

 

Figure 5 - A toolbar created with MFC.

To create such a toolbar, you would first declare a data CToolBar data member in the main window class, like this:

class CMainFrame : public CFrameWnd
{
  // ...
protected:
  CToolBar   m_wndToolBar;
// ...
};

Then would create a CToolBar window inside the OnCreate() member function of the main window, like this:



int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
  // ...
  m_wndToolBar.Create(this);
  m_wndToolBar.LoadBitmap(ID_TOOLBAR);
  // ...
}

To connect the bitmaps of the toolbar buttons with command IDs, MFC requires you to create an array of ID values. The 
order of the array must correspond exactly to the order of the bitmaps in the resource file. Here is how the ID array might 
look for the toolbar in figure 5: 

static UINT BASED_CODE buttons[] =
{

ID_EDIT_NEW_CHECK,
ID_EDIT_COMMIT_CHECK,
ID_SEPARATOR,
ID_PREV_CHECK,
ID_NEXT_CHECK,
ID_SEPARATOR,
ID_FILE_PRINT,
ID_APP_ABOUT,

};

It is interesting to see how ObjectWindows and MFC compare when it comes to making changes to toolbars. For 
example, by default MFC creates a toolbar to handle button represented by bitmaps 16 pixels wide and 15 pixels high. If 
you want larger buttons, you can't just paint bigger buttons with AppStudio and expect MFC to resize the toolbar. Instead 
you need to call the function CToolBar::SetSizes(), passing to it the size of the toolbar buttons and the size of the bitmap 
images in each button. You would use code like this:

SIZE buttonSize = {24, 24};
SIZE imageSize = {18, 18};
m_wndToolBar.SetSizes(buttonSize, imageSize);

You have to be careful that the button size is 6 pixels larger than the image size in both width and height. Otherwise, 
MFC will not display the buttons correctly. 

Using ObjectWindows, all you need to do is draw bigger bitmaps for the toolbar images. ObjectWindows is smart enough
to figure out that it needs to draw bigger buttons and a bigger toolbar without any need to write code.

Status Bars
Quick Summary:  ObjectWindows provides a very object-oriented status bar class that results in a simpler yet much more 
customizable status bar in applications.  MFC uses a limited and rigid C-based approach.

Both ObjectWindows and MFC have classes to support status bars. The main difference between the classes is their 
design.  ObjectWindows uses an object-oriented approach to simplify toolbar handling without limiting its ability to be 
customized.  MFC uses a traditional C approach which requires calling functions with a limited set of pre-defined 
arguments.  ObjectWindows uses the class TStatusBar, MFC the class CStatusBar. Both support automatic keyboard 
tracking for the toggle keys such as the CAPS lock key, the NUM lock key, the insert key, etc. 

Consider how indicators are inserted into a status bar. Indicators are fields that show the status of a toggle key, such as the
CAPS lock key. 

ObjectWindows uses an object-oriented approach. Class TStatusBar has options that allow you to enable the indicator 
fields you want, and also to control where the status bar is displayed in its parent window. The following code shows how
a status bar is typically created:

void TMyApp::InitMainWindow()
{
  Frame = new TDecoratedMDIFrame(...);

  TStatusBar* sb = new TStatusBar(0, TGadget::Recessed,



 TStatusBar::CapsLock | TStatusBar::NumLock | TStatusBar::Overtype);
  Frame->Insert(*sb, TDecoratedFrame::Bottom);
}

In MFC, you pass an array of  values to the Create() member function of CStatusBar, so you would create a status bar like 
this:

int CMainFrame::OnCreate(LPCREATESTRUCT lpcs)
{
  static UINT BASED_CODE indicators[] = {
  ID_SEPARATOR,           
  ID_INDICATOR_OVR,
  ID_INDICATOR_CAPS,
  ID_INDICATOR_NUM
};

 if (CFrameWnd::OnCreate(lpcs) == -1)
    return -1;

  CStatusBar  myStatusBar;
  if (!myStatusBar.Create(this) ) return;
  if (!myStatusBar.SetIndicators(indicators, sizeof(indicators)/sizeof(UINT)))
    return;
}

MFC status bars are relatively inflexible, because they only support features for which there is an option bit. 
ObjectWindows builds status bars using objects (derived from TGadget), so you can add any functionality you want by 
deriving a new class from TGadget and inserting it into the status bar. For example, say you wanted to put an edit control 
on the status bar, as shown in figure 6.

 

Figure 6 - A edit on an ObjectWindows status bar.

ObjectWindows has a class called TControlGadget, derived from TGadget, that allows you to associate a gadget control to 
any window you want. Using TControlGadget, an edit control could be inserted into a status bar using the code:

  TStatusBar* sb = new TStatusBar(0, TGadget::Recessed);

  const int ID_SEARCHTEXT = 100;
  char buffer [80];
  TEdit* searchText = new TEdit(sb, ID_SEARCHTEXT, buffer, 0, 0, 60, 20, 80);
  sb->Insert(*new TControlGadget(*searchText) );

There are a number of TStatusBar member functions you can use to determine the exact positioning of controls. You can 
insert controls on the left or right of another control, or you can insert a control at a specific absolute position. TStatusBar 
also has functions to make it shrink to the height of the largest control, and status bar controls can be tailored with 
specific window styles (e.g. borders, colors, etc.).

Tool Palettes
Quick Summary: ObjectWindows uses objects of small size built up into a class hierarchy supporting tool palettes that 
allows features to be changed with minimal code changes.  MFC, on the other hand, exposes a very complex and error-
prone approach to tool palettes.

Tool palettes are small moveable windows that contain bitmaps of "tools". Such palettes are used in paint programs, 
desktop publishing programs, etc. ObjectWindows and MFC both support Tool Palettes, but under different names. 

ObjectWindows tool palettes are built using a number of different classes. The individual buttons are derived from class 
TButtonGadget. The buttons are coordinated by the parent window class TToolBox. The frame of the tool palette is built 
using class TFloatingFrame. Because of the breakdown into small classes, you can change any tool palette feature with 
minimal code. Here is how a typical ObjectWindows tool palette is created:



void TMyApp::InitMainWindow()
{
  TWindow& client = *new TWindow(...);
  TDecoratedFrame* frame =  new TDecoratedFrame(0, Name, client);
  SetMainWindow(frame);

  TToolBox* tb = new TToolBox(0);
  tb->Insert(*new TButtonGadget(CM_TOOL+0, CM_TOOL+0,
                  TButtonGadget::Exclusive,   TRUE, TButtonGadget::Down));
  tb->Insert(*new TButtonGadget(CM_TOOL+1, CM_TOOL+1,
                  TButtonGadget::Exclusive, TRUE));
  tb->Insert(*new TButtonGadget(CM_TOOL+2, CM_TOOL+2,
            TButtonGadget::Exclusive, TRUE));
  // insert additional buttons
  // ...

  new TFloatingFrame(&client, "", tb, TRUE,
             TFloatingFrame::DefaultCaptionHeight, TRUE);
}

Since the buttons on the tool palette are full-blown C++ objects, they can support any functionality you want. MFC uses a
different approach, similar to its status bar implementation. MFC has a class called CToolBar, from which you derive a 
class to support a tool palette. You need the derived class, because CToolBar doesn't have a frame around its window. 
Tool palettes typically have a frame and caption, allowing the user to move the window around on the screen. Class 
CToolBar's  Create() member function takes an array of bitmap IDs. When the user clicks the tool palette, the owner 
window receives a command with the bitmap ID. Here is how you create a tool palette in MFC:

class CPaletteBar : public CToolBar {...};

class CMyWnd : public CFrameWnd
{
protected: 
  CPaletteBar m_wndToolPalette;
  
// ...
};
int CMyWnd::OnCreate(LPCREATESTRUCT lpcs)
{
 
static UINT BASED_CODE palette[] =
{
  ID_TOOL1,
  ID_TOOL2,
  // ...
};

 if (CFrameWnd::OnCreate(lpcs) == -1)
    return -1;

  if (!m_wndToolPalette.Create(this, nLeft, nTop) ||
    !m_wndToolPalette.LoadBitmap(IDB_PALETTE) ||
    !m_wndToolPalette.SetButtons(palette,

  sizeof(palette)/sizeof(UINT), 3) )
    return -1;   
  return 0;
}

IDB_PALETTE is the resource ID of a bitmap which actually contains an array of bitmaps. The array palette must contain
IDs that appear in the same order as the bitmaps in the resource IDB_PALETTE. Rather than implementing individual 
classes, then combining them to make a tool palette, with MFC you have to draw a series of bitmaps, create a parallel 
array of bitmap IDs, derive a new class, write all the code to draw borders, captions, ... pass arrays around, call Create 
member functions... That's an awful lot of work to accomplish what should be a standard feature. The possibility of errors
and bugs is high. Using ObjectWindows, the code is trivial.

Summary

ObjectWindows was designed from the outset to allow developers to create sophisticated user interfaces with automatic 
resizing of child windows, toolbars, palettes and status lines.  The objects that support these user-interface elements were 



created to allow easy use, without limiting the types of items that could be displayed.  MFC, on the other hand, has no 
support for automatic resizing of child windows and it's other objects are limited in how they can be customized.  

Dialog Box Controls

Quick Summary:  ObjectWindows treats dialog boxes and child controls just as any other object.  In MFC, use of these 
objects requires additional overhead through the use of  "helper" functions.

C++ programmers expect to be able to handle a dialog box's child controls in an object-oriented manner. ObjectWindows 
supports this style of programming directly. All you have to do is create an interface object for each item you wish to 
manipulate on a dialog box. Assume you use Resource Workshop to create the dialog box with a static text field. To 
create a C++ interface object for the field, the constructor of the dialog box would have the statement:

textField = new TStatic(this, IDC_TEXT, 10);

where the data member textField is declared TStatic*. Once the interface object is created, it can be used as a C++ 
replacement for the static text windows element. To set its text you would use the code:

textField->SetText("Hello");

ObjectWindows allows you to handle dialog box controls exactly the same way as other C++ objects. 

With MFC it is a different story. In MFC you don't create C++ objects for items that are part of a dialog box resource. 
Instead you let the Window dialog box manager construct the dialog box, then, when you need to access the control, you 
must have an inline helper function to retrieve a CWnd pointer, which you must then typecast into an appropriate object. 
To set a text field in an MFC dialog box, you would first need to have the helper member function shown below:

class CMyDialog : public CDialog
{
public:
  // ...
  CStatic&  Text()  {return *(CStatic*)GetDlgItem(IDC_TEXT); }
// ...
};

You would think that you could call GetDlgItem() at dialog box creation time, inside OnInitDialog(...), and store the 
returned pointer in a data member. This won't work, because the pointer returned by GetDlgItem() is subject to change at 
runtime. Using typecasting to return an object of the correct type is unsafe and totally violates the idea of object-oriented 
programming. If you use the wrong control ID value, you will probably get a pointer to the wrong type of control, with 
unpredictable consequences.

To set the text of the CStatic object, you must use the helper function to get a reference to an MFC interface object, then 
use the object like this:

Text().SetWindowText("Hello");

VBX Controls
Quick Summary: ObjectWindows takes a very consistent approach to controls — VBX or otherwise.  MFC requires 
special VBX handling.  In addition, MFC provides no drag-and-drop support for VBX controls.

VBX controls are Windows custom controls, developed primarily for Visual Basic. VBX controls are available from a 
wide number of vendors, and differ from traditional controls in the number of properties and attributes that are under user 
control. Both ObjectWindows and MFC provide support for VBX 1.0 controls, but differ in the manner and extent of their
support. 

Under ObjectWindows, VBX controls are handled the same as standard ObjectWindows controls: you add them to a 
dialog box using Resource Workshop and then add C++ code to create an interface object for them. VBX controls send 
special notification messages to their parent. ObjectWindows handles these through the class TVbxEventHandler. Dialog 



boxes that incorporate VBX controls need to be multiply derived from the base class TVbxEventHandler, and no additional 
logic is required. Assume you want to include a spreadsheet VBX control in the resource file for the dialog class 
TMyDialog. The class would be declared like this:

class TMyDialog: public TDialog, public TVbxEventHandler {

protected:

  TVBXSpreadsheet* spreadsheet;

public:

  //...
};

where the class TVBXSpreadsheet is assumed to be the name of the VBX control class. Handling the control is not any 
different from handling ObjectWindows controls. To create an interface object for a VBX control, you simply create an 
object of the correct type. For TVBXSpreadsheet, you would do something like this in the constructor for TMyDialog:

spreadsheet = new TVBXSpreadsheet(this, ID_SPREADSHEET);

Then you could manipulate the control through its member functions. VBX controls are designed for use with Visual 
Basic, and therefore lack the member functions that other controls often have, such as SetText(), GetSelIndex(), etc. With 
VBX controls, there are standard interface functions to get and set the control's various properties. Each control has its 
own set of properties, so each control is different. Assuming the TVBXSpreadsheet control has a property of type 
NumberOfColumns, you might set this property with the ObjectWindows code:

spreadsheet->SetProp("NumberOfColumns", 5);

To read a control's property, you similarly use the GetProp() function, like this:

int columns;
spreadsheet->GetProp("NumberOfColumns", columns);

VBX notification messages are handled by ObjectWindows. You associate a particular notification message with an 
ObjectWindows handler using response tables.  The response table for TMyDialog might look like this:

DEFINE_RESPONSE_TABLE2(TMyDialog, TDialog, TVbxEventHandler)
  EV_VBXEVENTNAME(ID_SPREADSHEET,"LostFocus",EvLostFocus),
  EV_VBXEVENTNAME(ID_SPREADSHEET,"GainedFocus",EvGainedFocus),
END_RESPONSE_TABLE;

The response table has EV_VBXEVENTNAME entries to bind VBX notification messages to ObjectWindows handlers. 
The member function TMyDialog::EvLostFocus() would be called when the VBX control with ID ID_SPREADSHEET sent
the notification message "LostFocus". The function EvLostFocus() would be called by ObjectWindows with a parameter 
pointing to a struct containing information about the VBX event and the control that send it.

Both ObjectWindows and Resource Workshop support VBX drag and drop controls. Inspecting a control's properties, you
will see entries like DragIcon and DragMode (if the control supports drag and drop). In MFC, drag and drop properties are 
not supported at all for VBX controls. Using AppStudio, the properties don't even show up in the properties dialog box.

Under MFC, VBX controls are supported in a different manner. For a dialog box to use VBX controls, its class must 
declare data members to point at each control. This is similar to ObjectWindows. The problem is that regular controls and
non-VBX controls are not allowed to have pointers to them in the class declaration. So there are different initial rules for 
VBX and non-VBX controls. VBX notification messages are bound to member functions using message maps, as in 
ObjectWindows, but with an extra level of complexity. A class CMyDialog using VBX controls that sent "LostFocus" and 
"GainedFocus" notification messages to the parent would be declared like this:

class CMyDialog : public CDialog
{
 public:
 // ...
  //{{AFX_DATA(CMyDialog)
  CVBControl* m_spreadsheet;



  //}}AFX_DATA
// ...

protected:

  // ...
  // Generated message map functions
  //{{AFX_MSG(CMyDialog)

afx_msg void OnLostFocus(UINT, int, CWnd*, LPVOID);
  afx_msg void OnGainedFocus(UINT, int, CWnd*, LPVOID);
//}}AFX_MSG
  DECLARE_MESSAGE_MAP()
};

The data member m_spreadsheet would be used to access the VBX control. The message map would need to look like this:

BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
  //{{AFX_MSG_MAP(CMyDialog)
  ON_VBXEVENT(VBN_LOSTFOCUS, ID_SPREADSHEET, OnLostFocus)
  ON_VBXEVENT(VBN_GAINEDFOCUS, ID_SPREADSHEET, OnGainedFocus)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

But as you can see, there is no mention of the original VBX properties "LostFocus" and "GainedFocus", which are the 
actual messages sent by the control. Instead, you must go through a process of registering VBX events with a VBX 
registration map, and obtain integer values like VBN_LOSTFOCUS and VBN_GAINEDFOCUS to use in the message 
map. For class CMyDialog, the VBX registration map would look like this:

//{{AFX_VBX_REGISTER_MAP()
UINT NEAR VBN_LOSTFOCUS = AfxRegisterVBEvent("LostFocus");
UINT NEAR VBN_GAINEDFOCUS  = AfxRegisterVBEvent("GainedFocus");

//}}AFX_VBX_REGISTER_MAP

VBX notification message handlers are sent 4 parameters by MFC. The function OnLostFocus() would be declared like 
this:

void CMyDialog::OnLostFocus(UINT uCode, int nIndex, CWnd* pWnd, LPVOID lpParams);

uCode is the notification code, and is almost never used. nIndex is also  fairly useless, and is the index of the event in the 
VBX control's event table. pWnd points to the control that sent the notification, and lpParams points to a block of 
parameters that describe the notification in detail.

VBXGen

Borland C++ 4.0 provides a tool called VBXGen to make VBX controls more accessible to C++ programmers.  VBXGen 
reads a VBX binary and creates a C++ class for the VBX control, including data members and member functions for its 
properties.  This makes accessing and subclassing a VBX control far easier than using the normal VBX interface.

Enhanced Controls
Quick Summary: ObjectWindows fully supports Borland's own 3D controls as well as those provided by Microsoft.  MFC 
has support for neither.

The best-looking applications today use 3D controls. The standard Windows controls are 2D, so Borland developed its 
own library of custom 3D controls, contained in the file BWCC.DLL. The following figure shows an example of a dialog 
box using the BWCC enhanced controls.

 
Figure 7 - A dialog box using some of the BWCC controls.

The Back Up bitmapped button was created by assigning a bitmap to a BWCC  button. Resource Workshop supports 



BWCC controls, handling them no differently from other standard Windows controls. Resource Workshop is also fully 
extensible, allowing third party  custom controls and VBX controls to be added and used like the built-in controls. 

ObjectWindows supports BWCC controls by default, and BWCC controls can be added to MFC applications by explicitly
loading the BWCC.DLL library. Although BWCC controls are usable in both application frameworks, there are 
differences in the amount of support each environment provides. For example, MFC's AppStudio does not display BWCC
controls (or other third party Windows controls), making it difficult -- at best -- to add them to dialog boxes. 

Although Borland has been using 3D controls for over 2 years, Microsoft only recently recognized the need for standard 
3D controls, issuing a technical note entitled Adding 3-D Effects To Controls, by K. Marsh and W. Cherry on the 
Developers' Network CD. The note describes a DLL called CTL3D.DLL developed by Microsoft that gives a 3D look to 
the standard Windows controls, like listboxes, group boxes and radio buttons. 

Transferring Data
Quick Summary: ObjectWindows provides very simple straightforward mechanisms to transfer data from dialogs to the 
underlying object.  MFC's DDX data exchange mechanism is much more complex and therefore harder to use correctly.

Dialog box child controls are used to get input and show results. C++ child controls are useful if they simplify the way 
data is transferred to and from the Windows elements attached to them. ObjectWindows supports two methods for 
transferring information to child controls. The first uses so-called transfer buffers, the second uses C++ data members. 
ObjectWindows transfer buffers are structs that contain one field for each child control that is enabled to transfer its data. 
The layout of the struct must match exactly the order of creation of the dialog box's controls. For example, the following 
transfer buffer:

struct TTransferBuffer {
  BOOL MrTitle;
  char NameEdit [10];
  BOOL CheckBox1;
} MyTransferBuffer;

could be associated with the dialog box whose constructor looked like this:

TMyDialog::TMyDialog(TWindow* parent)   : TDialog(parent, ID_MYDIALOG)
{
  new TRadioButton(this, ID_RADIOBUTTON, 0);
  new TEdit(this, ID_EDIT, 10);
  new TCheckBox(this, ID_CHECKBOX);

  SetTransferBuffer(&MyTransferBuffer);
}

Each control type is associated with a specific type in the transfer buffer: radio buttons use BOOL values, edit controls 
use char arrays, checkboxes use BOOL values, etc. Once a transfer buffer has been created, all ObjectWindows needs is a 
way to access it, accomplished with the statement:

SetTransferBuffer(&MyTransferBuffer);

in the constructor of TMYDialog. ObjectWindows automatically transfers data from the dialog box controls to the transfer 
buffer when the user closes the dialog with the OK button. You can also call the function TransferData(tdGetData) at any 
time to cause an immediate transfer of data into the buffer on demand. 

When a dialog box is opened, ObjectWindows automatically initializes the box's controls with the data stored in the 
transfer buffer. You can also copy data from the transfer buffer to the dialog box at any time by calling the function 
TransferData(tdSetData). The use of TransferData() is not limited to child controls. You can use the function to get/set the 
data of any child window, nested arbitrarily deep in a window hierarchy.

You can also transfer data in or out of dialog box controls using standard C++ data members. This is a new method that 
was previously unavailable under ObjectWindows 1.0. Basically, a dialog box (or a window using child controls) can be 
equipped with a data member for each control that is enabled to transfer data. Checkboxes and radio buttons use a BOOL 
data member, edit controls use a char array, listboxes use a TListBoxData member, etc. To initialize the data in a dialog 



box, you only need to setup the dialog's data members before displaying the window, using code like:

TMyDialog dlg;       // create a local dialog box object

// initialize the dialog's child control data
dlg.radioButton = TRUE;
dlg.checkBox = FALSE;
strcpy(dlg.edit, "Name");

// display the dialog
if (dlg.Execute() == IDOK) {

  // use the data entered into the dialog box...
  if (dlg.radioButton)
    ...
  if (dlg.checkBox)
    ...
}

The function TDialog::Execute() no longer deletes the dialog box before returning (as it did in ObjectWindows 1.0), so you
can access the dialog's data members after TDialog::Execute() returns. Using local objects lets the compiler take care of 
deleting the dialog box object.

MFC handles the transfer of data to and from child controls through a mechanism called Dialog Data Exchange, or DDX 
for short. With DDX, each control in the dialog box is associated with data member of the dialog box class. Consider a 
dialog box containing a radio button. The dialog class would be declared something like this:

class CMyDialog : public CDialog
{
public:
  // ...
  //{{AFX_DATA(CMyDialog)
  int m_RadioButton;
  CString m_Edit;
  int m_CheckBox;
  //}}AFX_DATA

protected:

  virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support

  // ...
};

The declarations bracketed by AFX_DATA are the dialog box's data map. Each entry is attached to a control at runtime, 
using special DDX function calls called in the member function DoDataExchange(), like this:

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{
  CDialog::DoDataExchange(pDX);

  //{{AFX_DATA_MAP(CMyDialog)
  DDX_Radio(pDX, ID_RADIOBUTTON, m_RadioButton);
  DDX_Text(pDX, ID_EDIT, m_Edit);
  DDX_Check(pDX, ID_CHECKBOX, m_CheckBox);
  //}}AFX_DATA_MAP
}

Each type of control has a series of different DDX functions, based on the type of the data member associated with the 
control. MFC calls DoDataExchange() automatically to initialize the child controls before displaying a dialog box, and to 
get the new values of the controls when then dialog is closed with the OK button. You can cause information to be 
transferred to or from the exchange data members by calling the function UpdateData(BOOL). The call UpdateData(TRUE) 
causes data to be transferred from the child controls to the data members. The call UpdateData(FALSE) causes a transfer in 
the opposite direction.



Data Validation
Quick Summary: ObjectWindows uses a very object-oriented approach to data validation where a validator object is 
attached to a control; no extra code is needed because the validator handles it.  In MFC data validation is handled 
through a series of global functions and validation only happens during data exchange.  This also makes MFC data 
validation dangerous and crash-prone.

When a user enters data into a dialog box and clicks the OK button, you normally need code to check that the data is 
valid. Numbers may have to be range-checked, strings looked up in a table, etc. MFC and ObjectWindows both support 
data validation, in varying degrees, but the two frameworks use completely different approaches. ObjectWindows 2.0 
adopts a fully object-oriented method, using a class hierarchy of validators. MFC uses the usual C approach, using a 
series of global functions for various validation types.

With ObjectWindows, the idea is that controls that need to be validated can have a validator object attached to them. 
When the dialog is closed with the OK button, ObjectWindows calls the CanClose() member function for each control. 
The CanClose() function of TEdit objects checks to see if a validator is attached to the control, and invokes it if so. The 
validators are supported by the class hierarchy shown in figure 8:

µ §

Figure 8 - The class hierarchy of ObjectWindows validator objects.

To use one of the validators, you first create a TEdit control to be validated, then create a validator object, then attach the 
validator to the TEdit control. The following code creates an edit field that accepts numbers in the range 20..99:

edit = new TEdit(this, 103, 10);
edit->SetValidator(new TRangeValidator(20, 99) );

The validator not only checks the edit control when the dialog box is closed with the OK button, but also has the option of
checking every character types into the associated edit field. Validators of type TRangeValidator are associated with edit 
fields expecting numbers. TRangeValidator allows only digits to be entered. All other characters are ignored. When the 
control losses the focus, or the dialog box is closed with the OK button, the validator does a range check on the number 
entered. If the value is out of range, ObjectWindows displays a dialog box that looks like this:

 

Figure 9 - The error message displayed by an ObjectWindows TRangeValidator object.

MFC handles the entire subject of data validation differently. MFC couples data validation very tightly to a dialog box's 
data exchange mechanism. To validate data, there are no objects involved, just global function calls. You have to add 
explicit code to your application to support validation. For example, if the dialog box CMyDialog contained an edit field 
expecting a number in the range 20..99, you would first need to setup the dialog box for data exchange, using the member
function DoDataExchange(). Data validation is not supported unless data exchange is enabled. The dialog box would need 
to declare a data member to accept the control's data, like this:

class CMyDialog : public CDialog
{
  // ...
public:
  //{{AFX_DATA(CMyDialog)
  int m_nEmployeeAge;
  //}}AFX_DATA
protected:
  virtual void DoDataExchange(CDataExchange* pDX);
};

To validate the data, you need to add code to the dialog's DoDataExchange() member function, doing something like this:

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{
  CDialog::DoDataExchange(pDX);



  //{{AFX_DATA_MAP(CMyDialog)
  DDX_Text(pDX, ID_EMPLOYEEAGE, m_nEmployeeAge);
  DDV_MinMaxInt(pDX, m_nEmployeeAge, 20, 99);
  //}}AFX_DATA_MAP
}

The DDX_Text() call transfers data from the edit control to the data member m_nEmployeeAge, after converting the data to 
integer format. The next DDV_MinMaxInt() call validates the data. MFC poses the arbitrary restriction that a DDV call 
immediately follow a DDX call for a given control. DDV calls placed elsewhere in your code are not guaranteed to work.
The DDV functions are only called during the data exchange process. Because of this, the user is not restricted from 
entering alphabetic characters into a number field. Only after entering data and attempting to close the dialog box with 
the OK button do you get an error message. No error occurs by simply moving the focus to another control. The DDV 
function displays an error message if you attempt to close a dialog box containing out-of-range numbers. The function 
DDV_MinMaxInt() displays the following message in the example code above:

 

Figure 10 - The error message displayed by the MFC function DDX_MinMaxInt().

The data validation process buried inside MFC is capable of throwing MFC exception macros. If you create a dialog box 
that handles its child controls through pointers or references to CWnd objects, the exception handling mechanism may 
cause a non-local jump, resulting in the destructors not being called for the child controls. Your code would most likely 
terminate or crash at this point.

Custom Validators
Quick Summary: Due to ObjectWindow's object-orientation, it is easy to add custom validation.  Not so in MFC where its 
decidedly non-trivial to do so.

It is easy to customize data validation for ObjectWindows controls: all you do is derive a class from one of the standard 
validators, and add or change the necessary features. For example, say you had a dialog box in which the state of a 
checkbox determined which set of strings were valid for an edit control. You could handle this situation easily by 
deriving a class from TLookupValidator, overriding the function Lookup, like this:

class TMyLookupValidator: public TLookupValidator {

public:

  BOOL Lookup(const far char* str) {
    TMyDialog* dlg = TYPESAFE_DOWNCAST(TMyDialog*,Parent);
    if (!dlg) return 0;
    if (dlg->CheckBox->GetCheck() == BF_CHECKED) {
      // the checkbox is checked
      return !stricmp(str, "String 1");
    }
    else {
      // the checkbox isn't checked
      return stricmp(str, "String 2");
    }
  }
};

You would then use a SetValidator() call to connect an object of type TMyLookupValidator to your an edit control. 

With MFC, customizing data validation is not trivial, and can involve anything from the addition of C code to the 
DoDataExchange() function of a dialog box to the creation of several C functions. Data validation is further complicated by
the fact that it is intimately tied in with dialog data exchange. To use the example above, an MFC implementation would 
require a new DDV function, but not a new DDX one, since the data being transferred (of type CString) is already 
supported by the built-in function DDX_Text(). The dialog box code might look like this:

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{
  CDialog::DoDataExchange(pDX);



  //{{AFX_DATA_MAP(CMyDialog)
  DDX_Check(pDX, ID_CHECKBOX, m_bCheckBox);
  DDX_Text(pDX, IDC_EDIT1, m_strEdit);
  DDV_MyText(pDX, m_bCheckBox, m_strEdit);
  //}}AFX_DATA_MAP
}

The function DDV_MyText(CDataExchange*, BOOL, CString&) is the custom validator, and must be called immediately 
after the DDX function for the edit control being processed. DDV_MyText(...) would be implemented using code like this:

void AFXAPI DDV_MyText(CDataExchange* pDX, BOOL bCheckBox, CString& strEdit)
{
  if (bCheckBox) {
    if (strEdit == "String 1")
      return TRUE;
    else {
      AfxMessageBox("String 1 expected");
      pDX->Fail();
      return FALSE;
    }
  }
  else {
    if (strEdit == "String 2")
      return TRUE;
    else {
      AfxMessageBox("String 2 expected");
      pDX->Fail();
      return FALSE;
    }
}

Note that DDV_MyText(...) is a global function, so it belongs to no classes. The tendency to use global helper functions 
throughout MFC goes against the grain of good object-oriented programming practices and is something you expect in a 
C library, not a C++ class library. The matter isn't just cosmetic. Not utilizing class objects or class data members means 
you don't get to reuse or inherit functionality. For example, if you need to validate a custom data type, you need to write a
DDX function for it, containing statements that would be unnecessary in a C++ class hierarchy. A typical custom DDX 
function could look like this:

void AFXAPI DDX_Check(CDataExchange* pDX, 
                      int nEditID, 
                      BOOL bCheckBox, 
                      CString& strEdit)
{
  HWND hWndCtrl = pDX->PrepareEditCtrl(nEditID);
  if (pDX->m_bSaveAndValidate) {
    if (!GetEditData(hWndCtrl, bCheckBox, strEdit) ) {
      AfxMessageBox(IDS_INVALID_VALUE);
      pDX->Fail();
    }
  else 
    SetEditData(hWndCtrl, strEdit);
}

The calls to CDataExchange::PrepareEditCtrl() and CDataExchange::Fail() wouldn't be necessary if the data exchange and 
validation mechanism were built around class objects. There are also lots of subtle details that you may need to be aware 
of about class CDataExchange to write a correct set of custom DDX and DDV functions.

MDI

Quick Summary:  ObjectWindows makes it easy to create MDI and SDI applications.  MFC uses a somewhat similar 
approach.



Multiple Document Interface (MDI) applications are very common these days, and ObjectWindows makes it just as easy 
to create an MDI app as an SDI one. The main window of the application determines whether an app is MDI or SDI. The 
main window is created in the TApplication::InitMainWindow() member function. For an MDI app, the code would look 
like this:

void TMyMDIApp::InitMainWindow()
{
  MainWindow = new TMDIFrame("App Name", "MDIMenuID");
}

The constructor used to create the TMDIFrame window is declared like this:

TMDIFrame(const char far* title, TResId menuResId,
                      TMDIClient& clientWnd = *new TMDIClient,
                      TModule*  module = 0);

The constructor takes a reference to a TMDIClient object, which is created automatically by default. TMDIClient manages 
the MDI child windows, and often is sufficient for ordinary programs. If you wish to use a custom TMDIClient object, you
only need to derive a class from TMDIClient, and use it in the constructor call for TMDIFrame, like this:

  MainWindow = new TMDIFrame("App Name", "MDIMenuID", *new TMyMDIClient);

ObjectWindows MDI programs usually derive a class from TMDIClient to support menu and tool bar commands, but you 
can also handle these commands at the application object level, or by deriving a class from TMDIFrame. SDI applications 
can be built either by deriving a class from TFrameWindow, or by creating a customized TWindow-derived object to handle
the main window's client area. The following code shows how an SDI app might be created using the first approach:

class TMySDIWindow : public TFrameWindow {
public:
  TMySDIWindow(TWindow* parent, const char* title)
       : TFrameWindow(parent, title), TWindow(parent, title)
  {     AssignMenu(MYMENU_ID);    }
   
// ...
};

class TMySDIApp : public TApplication {
  public:
    TMySDIApp() : TApplication("MyApp") {}
    void InitMainWindow() 

{ MainWindow = new TMySDIWindow(0, "SDI Window"); }
};

Both classes TFrameWindow and TMDIFrameWindow have built-in support for certain standard menu commands, such as 
File | Open, File | Exit, etc.

Under MFC, an MDI application is created using a process similar to ObjectWindows: you derive a class from 
CMDIFrameWnd, create an dynamically allocated instance of the class, and assign its address to the data member 
TWinApp::m_pMainWnd, like this:

class CMyMDIFrameWnd : public CMDIFrameWnd
{
  // ...
};

BOOL CMyMDIApp::InitInstance()
{

m_pMainWnd = new CMyMDIFrameWnd;
pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();
return TRUE;

}

To create an SDI application with MFC, the process is almost the same, except the main window is derived from 
CFrameWnd, instead of CMDIFrameWnd, like this:

class CMySDIFrameWnd : public CFrameWnd



{
  // ...
};

The code in TApp::InitInstance() would remain as previously shown for CMyMDIApp.

GDI Classes

Quick Summary:  ObjectWindows provides a rich set of classes that support Windows graphics calls.  The object oriented 
nature of ObjectWindows provides greater flexibility and scalability than MFC does.

ObjectWindows 2.0 has a large variety of classes that completely encapsulate the Windows GDI objects, such as device 
context, pens, brushes and fonts. Figure 11 shows the class hierarchy of these classes:

µ §

Figure 11 - The hierarchy of ObjectWindow's GDI classes.

A common problem with traditional Windows programs is memory leakage, related to GDI operations. For example, if 
you create a pen, use it, then forget to delete it (or delete it while it is selected into a device context), you'll have a GDI 
memory leak. A leaked GDI object is also called an orphan. ObjectWindows helps you avoid orphans, using the base 
class TGDIObject, from which the ObjectWindows GDI classes are derived. When a GDI object, such as a TPen, goes out 
of scope, ObjectWindows can automatically delete the Windows pen attached to it as soon as it is able (when it is finally 
deselected from the DC). By default ObjectWindows attempts to delete GDI objects attached to ObjectWindows objects 
that go out of scope, but the option can be disabled if necessary. The option is known as orphan control. 

Creating ObjectWindows GDI objects is very simple. To create a TPen object, you would use code like:

TPen pen(TColor::Magenta);

To create a TBrush, you would use code like:

TBrush brush(TColor(100, 100, 100) );

ObjectWindows makes heavy use of default parameters, to simplify constructor calls. Obviously you can supply actual 
arguments for those parameters whose defaults are not what you want. Using ObjectWindows GDI objects is much 
simpler than using straight Windows GDI calls. To use a TPen you would use code like this:

void TMyWindow::DrawLine(TDC& dc)
{
  // create a pen  
  TPen pen( TColor(100, 200, 300) );
 
  // select it into the paint context
  dc.SelectObject(pen);

  // draw a line
  dc.MoveTo(30, 30);
  dc.LineTo(10, 100);

  // unselect the pen
  dc.RestorePen();
}

When the TPen object goes out of scope, it will automatically delete the associated GDI pen object. In order for 
ObjectWindows to be able to delete the GDI pen, you must select the pen out of the device context, using the function 
TDC::RestorePen(). If RestorePen() was not called, the pen handle would remain usable in the DC until it was deselected.  
At that point the orphan control would delete it.  The real power of ObjectWindows GDI objects becomes apparent when 
you use multiple objects together. 



MFC also has classes to encapsulate GDI operations, but offers much less power and variety. The following table shows 
the ObjectWindows GDI classes, with the corresponding MFC ones.

ObjectWindows
Class

Equivalent MFC Class

TGdiBase

TGdiObject CGdiObject

TIcon

TCursor

TDib

TRegion CRegion

TBitmap CBitmap

TFont CFont

TPalette CPalette

TBrush CBrush

TPen CPen

TDC CDC

TWindowDC CWindowDC

TPaintDC CPaintDC

TCreatedDC

TMetafileDC CMetaFileDC

TDesktopDC



TScreenDC

TClientDC CClientDC

TDibDC

TPrintDC

TIC

TMemoryDC

TPrintPreviewDC

Table 1 - The ObjectWindows GDI classes, with the corresponding MFC classes.

Although MFC has many corresponding classes to ObjectWindows, the classes are normally not equivalent. MFC 
supports an API that corresponds almost directly to the lower level Windows API. This may make it easier for C 
programmers to use MFC, but certainly doesn't help in reducing the complexity of Windows programming. The following
code shows how to use a CPen object to draw a line.

void CMyWindow::DrawLine(CDC* pDC)
{
  CPen pen;
  if (!pen.CreatePen(PS_SOLID, 2, RGB(0,0,0) ) )
    return;
  CPen* pOldPen = pDC->SelectObject(&pen);
  pDC->MoveTo(30, 50);
  pDC->LineTo(40, 50);
  pDC->SelectObject(pOldPen);
}

Every time you create a GDI object like a pen or a brush with MFC, you always have to check the return value, because 
resource creation is subject to failure, and MFC only performs a simple translation of function calls like pen.CreatePen(...) 
into direct Windows API calls.  ObjectWindows is considerably more sophisticated, and uses exception handling to deal 
with resource allocation errors, making it unnecessary for you to constantly check return values.  This is a subtle but very 
important point because programmers are much more productive if they are allowed to program for what is supposed to 
happen instead of always thinking of every possible eventuality for every line of code.

MFC makes almost no use of default arguments in the GDI objects, forcing you to pass a great deal of parameters around.
When you select objects into a device context, you have to store a pointer to the previous object, so that you can later 
restore the original object.

Printer Support

Quick Summary:  ObjectWindows makes it easy to add printer support to an application regardless of the type of 
information being displayed.  Printer support is far easier to use and far more flexible than with MFC and is not as 



restricted.

ObjectWindows 2.0 makes it simple to add printer support to your application. Two classes do the basic work. Class 
TPrinter handles the printer, calling the necessary DLLs. Class TPrintOut is a class you derive your own class from to print 
your application. For each page to be printed, ObjectWindows calls the virtual function TPrintout::PrintPage(int, TRect&, 
unsigned). 

To implement printer support, a class needs to create both a TPrintout-derived and a TPrinter object like this:

class TWindowPrintout : public TPrintout {
protected:
    TWindow* Window;
public:
 // ...
 TWindowPrintout(const char* title, TWindow* window)
    : TPrintout(title) {Window = window;}
  void PrintPage(int page, TRect& rect, unsigned flags);
};

class TMyWindow: public TFrameWindow {
  TPrinter* Printer;
public:
  TMyWindow(TWindow* parent, const char* title)
    : TFrameWindow(parent, title),
      TWindow(parent, title) 
  { Printer = new TPrinter;
    // ...
  }
void CmFilePrint()
  { TWindowPrintout printout("Printout", this);
    printout.SetBanding(TRUE);
    Printer->Print(this, printout, TRUE);
  }
  // ...
};

Of course the printer object will need to be deleted in the class destructor. The printing function can be as simple as this:

void TMyWindow::PrintPage(int, TRect& rect, unsigned)
{
  Window->Paint(*DC, FALSE, rect);
}

Normally you will want to scale the print DC so the printout has the same aspect ratio as the screen, an operation 
involving calls to the printer DC member functions inside class TPrintDC.

MFC also supports printing, but using few classes and lots of function calls. The class CView is where printing is handled.
The class has a number of member functions, such as OnPreparePrinting(), OnBeginPrinting(), OnPrint() and OnEndPrinting(), 
which you must override in your class derived from CView. Incidentally, printing is supported only when using the 
document/model mode. Simple applications that just have windows, without document objects, will not support printing.

You call the function CView::DoPreparePrinting() to make MFC display a Print dialog box and create the Print device 
context. Because you can't override this function (it isn't declared virtual!), in your derive CView classes, it is difficult to 
change the default behavior. Many applications use a custom Print dialog box, or need considerable flexibility in setting 
up the Print DC. MFC doesn't even have a class to handle Print DC's, so there are a lot of details that you need to take 
care of in your own code.

Resources

Quick Summary: Menus, bitmaps, metafiles and fonts are richly supported in ObjectWindows in a hierarchical, flexible, 
object-oriented approach which gives finer control over behavior while at the same time requiring less coding.  This 
makes ObjectWindows programmers working with resources more productive than those using MFC.



Both ObjectWindows and MFC have classes or member functions to support the basic Windows resources: menus, 
bitmaps, fonts, accelerators and strings. The two frameworks, as usual, differ in their degree of support. The following 
sections describe the resource support briefly.

Menus
Quick Summary: ObjectWindows has very powerful capabilities when dealing with menus.  The key concept is menu 
merging in which ObjectWindows takes care of the details for you while MFC forces the programmer to sweat those 
details.

ObjectWindows has two basic classes to encapsulate Windows menus: TMenu and TSystemMenu, with simple member 
function calls to manipulate all the elements of menus and allowing you to create bitmapped menus. One of the most 
interesting innovations in ObjectWindows menus is the ability to design menus as combinations of other menus, allowing 
the system to combine menus together at runtime -- just as in OLE 2.0. In traditional Windows programs, you create 
menus using Resource Workshop. You then load the menu resource and attach it to your main window. With 
ObjectWindows 2.0, there is much more flexibility. 

Consider designing the menus for an MDI editor. You can design a barebones menu to be shown when the application 
starts, when no editors are open. The menu might have only File and Help submenus. When a child editor window is 
opened, you will want to extend the main menu to include perhaps an Edit, Search and Window submenu. First you 
create separate menus in Resource Workshop, then you use objects of class TMenuDescr in your code to manage these 
menu fragments.

You attach a menu to the main window using the code:

MyApp::InitMainWindow()
{
    // create a main window
  MainWindow =  new TMDIFrame("Main Window", 0);

  // attach a menu to the main window
  MainWindow->SetMenuDescr(TMenuDescr(IDM_MAINMENU,1,0,0,0,0,1) );
}

TMenuDescr is a class whose constructor accepts a series of integer values right after the menu resource ID. These integers
indicate the number of submenus the resource contains, and at which location in the main menu to insert each of these 
submenus. The two 1's appearing in the argument list indicate that there is one File submenu and one Help submenu. The
submenus indicated in the argument list are assumed to refer to menu groups in the following order: {File menu, Edit 
menu, Container menu, Object menu, Window menu, Help menu}. 

The child editor windows may have a small menu attached to them, using code like:

void TMyApp::CmFileNew()
{
  TMDIChild* child = new TMDIChild(*Client, "", new TEditFile(0, 0, 0));
  child->SetMenuDescr(TMenuDescr(IDM_EDITFILE_CHILD, 0, 2, 0, 0, 0, 0));
}

The child window's menu is assumed to contain two submenus, the first to be inserted in the Edit submenu, the second 
submenu right after it on the right side. When a child editor window is opened, ObjectWindows will merge any menu 
attached to it with the already existing main menu. The ability to design menus piecewise not only reduces the effort to 
design complex menuing systems, but also vastly decreases the amount of code necessary to support them in your 
application.

MFC has no equivalent classes or functions to handle the merging of menus.

Bitmaps
Quick Summary: ObjectWindows provides classes for device independent bitmaps, supports clipboard operations on 
bitmaps and supports reading and writing bitmaps to files.  MFC supports none of this.



  
ObjectWindows 2.0 support bitmaps with the two classes TBitmap and TDib. The former supports device-dependent 
bitmaps, the latter device-independent bitmaps. The two classes have many similar member functions, such as Width(), 
Height(), ToClipboard(Clipboard&), but TDib provides quite a bit more functionality than TBitmap. To create a TDib or 
TBitmap, all you need is one line of code:

TDib* MyDib = new TDib(*GetModule(), "MYDIB");
TBitmap* MyBitmap = new TBitmap(*GetModule(), "MyBITMAP");

To display a TDib or TBitmap in response to a WM_PAINT message, you would write something like this:

void TMyWindow::Paint(TDC& dc, BOOL, TRect&)
{
  TMemoryDC memDC(dc);
  memDC.SelectObject(*MyBitmap);
  dc.BitBlt(0, 0, MyBitmap->Width(), MyBitmap->Height(), memDC, 0, 0, SRCCOPY);
}

Class TDib knows how to read and write itself to a file. Both TDib and TBitmap also support clipboard operations, 
requiring only a few lines of code. For example, to paste a TDib from the clipboard, all you need to get a clipboard object,
check that it contains an object of the right type, then create a new object based on the clipboard, like this:

void TMyWindow::CmPaste()
{
  TClipboard clipboard;
  if (!clipboard)  return;

  TDib*  newDib = 0;

  if (clipboard.IsClipboardFormatAvailable(CF_DIB) )
    newDib = new TDib(TDib(clipboard));
}

To paste bitmaps to the clipboard, the code is even simpler, reducing to this:

void TMyWindow::CmCopy()
{
  TClipboard clipboard;
  if (clipboard.EmptyClipboard() ) {
    TDib(MyDib).ToClipboard(clipboard);
  }
}

MFC has the class CBitmap to support bitmaps. There is no class for device-independent bitmaps. Class CBitmap provides 
only minimal encapsulation of Windows bitmaps. Clipboard operations are not supported, nor does the class know how to
read or write bitmaps to a file.

Metafiles
Quick Summary: Windows metafiles — important efficient graphics storage objects — are encapsulated in 
ObjectWindows while MFC provides no support for these metafiles.

ObjectWindows 2.0 provides encapsulation of Windows metafiles, using the two classes TMetaFileDC and TMetaFilePict. 
Metafiles are used to store pictures as collections of GDI calls rather than as arrays of pixels, and therefore use very little 
storage. Metafiles are frequently used for cutting and pasting pictures to/from the clipboard. Metafiles can also be stored 
on disk, or even used to create TBitmap images. You can create a TMetaFilePict with code like this:

 void Image()
 {
  TMetaFileDC dc;
  TPen pen(TColor::Black);
  dc.SelectObject(pen);
  dc.MoveTo(0, 100);
  dc.LineTo(100, 100);
  TMetaFilePict picture(dc.Close() );
 }



Once you have a TMetaFilePict object,  you can use it to create other objects, such as a TBitmap, with code like this:

TPalette* palette = new TPalette((HPALETTE)GetStockObject(DEFAULT_PALETTE));
TBitmap* bitmap = new TBitmap(*picture, *palette,
                              GetClientRect().Size() );

// use the bitmap...

MFC offers no support or encapsulation for metafiles.

Fonts
Quick Summary: ObjectWindows demonstrates its clean, object-oriented architecture in its support for Windows fonts.  
Simple constructors with default arguments do all the work.  In MFC creating font objects is overly complex.

ObjectWindows uses the class TFont to encapsulate Windows fonts. You can create a TFont object either by passing all 
the font attributes, by passing a LOGFONT structure, or by passing another TFont object. The constructor has defaults for
almost all its arguments, so you don't normally need to pass too many arguments. For example, you can create a complete
font with the code:

TFont* font =  new TFont("Courier New", 10);

TFont objects are used in conjunction with TDC objects, which handle device context details. A font is used to display 
text using code like this:

void TMyWindow::Paint(TDC& dc, BOOL erase, TRect& rect)
{
  TFont font("Courier New", 10);
  dc.SelectObject(font);
  dc.TextOut(0, 0, "Text");
}

MFC uses class CFont to encapsulate fonts. You create CFont objects in two steps. First you declare a variable of type 
CFont. The constructor takes no parameters. Then you call the function CFont::CreateFont() or CFont::CreateFontIndirect() to 
setup the font characteristics. CFont::CreateFont() is declared like this:

BOOL CreateFont(int nHeight, int nWidth, int nEscapement,
                int nOrientation, int nWeight, 
                BYTE bItalic, BYTE bUnderline,
                BYTE cStrikeOut, BYTE nCharSet, 
                BYTE nOutPrecision, BYTE nClipPrecision, 
                BYTE nQuality, BYTE nPitchAndFamily,
                LPCSTR lpszFacename);

As you can see, there are no defaults for the arguments, forcing you to supply an endless list of items -- most of which are
not normally of interest -- and lookup all the details of things like the clipping precision or the strikeout mode. Possibly 
because of this, fonts are usually created using CFont::CreateFontIndirect(), which takes a pointer to a LOGFONT struct. 
CFont doesn't support much object-orientation. You  create a CFont objects with code that looks almost the same as old C 
code did:

LOGFONT logfont;
memset(&logfont, 0, sizeof(logfont));
logfont.lfHeight = 40;
logfont.lfWeight = FW_BOLD;
strcpy(logfont.lfFaceName, "Arial");
CFont font;
font.CreateFontIndirect(&logfont) );

Actually, creating fonts this way is harder than just using straight C code by itself.  CFont objects work with CDC classes,
which handle device context details. You use CFonts like this:

void CMyWindow::OnPaint()
{
  // create a new font



  CFont font;
  font.CreateFontIndirect(...);

  // use the new font
  CPaintDC dc(this);
  CFont* pOldFont = dc.SelectObject(&font);
  dc.TextOut(10, 10, "Text");
  dc.SelectObject(pOldFont);
}

It is hard to see any benefit from the use of CFont over standard Windows API calls. Even the process of selecting and 
unselecting a font into the device context is required with CFont.

Containers

Quick Summary: ObjectWindows really shows its object-oriented strength on containers.  Important concepts like 
ownership, cleanup on deletion and iteration are key to ObjectWindows implementation that uses templates extensively.  
The C-style collections provided by MFC are not really worth using.

One of the main components of medium and large OOP projects is the container. Novice C++ programmers usually resort
to C methods to handle collections of things, not realizing that they are missing one of the greatest advantages of the 
language. 

ObjectWindows Containers
Quick Summary: The BIDS classes provided by ObjectWindows include all the fundamental ones used in the object-
oriented community.  There are 11 basic types included.

ObjectWindows 1.0 used two different kinds of container classes: one that handled items derived from class Object, the 
other based on template classes that could handle any type of data. The former containers are still supported in 
ObjectWindows 2.0, but are considered obsolete, and are being phased out. The latter are called the BIDS (Borland 
International Data Structures) containers, and are designed to be the workhorses of larger ObjectWindows 2.0 
applications. BIDS containers are split into two basic categories: FDS (Fundamental Data Structures) and ADT (Abstract 
Data Types). FDS containers represent basic memory organizations of objects, such as vectors, lists and hashtables. ADT 
containers are higher level ones, built using an FDS containers. Stacks, Arrays, Dictionaries, Bags and Sets are examples 
of ADT containers. Table 2 shows the FDS and ADT container types.

FDS Containers ADT Containers

Binary Search Tree Array

Hash Table Dequeue

Singly Linked List Dictionary

Doubly Linked List Queue

Vector Set



Stack

Table 2 - The FDS and ADT containers in the BIDS container class hierarchy.

The table contains all the typical containers used throughout the object-oriented programming community. All containers 
are template classes, so you can create containers for any type of data you want. You can also create your own class 
hierarchy of objects, and insert any of them into the containers, using standard C++ template class notation. Each type of 
container can use direct objects, or pointers to objects. Many container types support sortable objects.

MFC Containers
Quick Summary: MFC's contains are C-style and do not use templates and are thereby quite inflexible.  Only 3 basic 
types are provided.  Worse, non-standard terminology inhibits understanding and communication.  There is no type-safety
and ownership is not enforced making memory leaks common occurrences.

In contrast, MFC doesn't support template classes, and hence resorts to a C style in dealing with collections. MFC has 
only three basic types of containers: Arrays, Lists and Maps. Microsoft calls maps what most of the OOP world calls 
dictionaries. Dictionaries are containers that manage associations. For example a symbol table is a dictionary, in which 
strings are associated with numeric values. Figure 12 shows the class hierarchy of MFC containers.

µ §

Figure 12 - The MFC container class hierarchy.

The figure is unequivocal: MFC only supports 3 basic types of containers.  MFC doesn't support important container 
types such as Sets, Stacks, Queues, or Hash Tables. In fact, MFC doesn't even support the notion of containers for 
sortable objects, so you would have a hard time building a standard container to sort objects. MFC uses a different 
container class for each type, rather than use templates to do the same thing in a more  object oriented style. What if you 
need to put objects of a type MyType into an MFC container? The only choice is to use one of the containers that take 
void* types, and perform explicit typecasting. This violates the principles of OOP, not only forcing the programmer to 
keep track of types, but also increasing the likelihood of bugs, since there is no inherent type safety when typecasting.

Another  important issue with containers is ownership. A container is said to own the items it contains if it can delete 
those items when the container goes out of scope. Items in containers are often allocated from the heap, so it is important 
to delete them when they are no longer in use. If you put the same object in two different containers, you must make sure 
that only one of the containers owns the object, otherwise both will attempt to delete the same object. Ownership ensures 
that containers can clean up after themselves, preventing memory leaks. Ownership is handled in ObjectWindows by a 
class called TShouldDelete, which is a base class for all the containers.

MFC has no concept of ownership in its container class library. MFC containers don't delete their contents when going 
out of scope. Unless you explicitly iterate over a container and delete its elements, you may have memory leaks. Even 
worse, deleting an association in a Map doesn't delete the value object associated to the key -- you have to do that 
yourself. All these things add up in a real application, making it easy for an application to spring leaks that are hard to 
find.

Iteration
Quick Summary: ObjectWindows provides convenient invariant iterators for its containers.  MFC still uses the clumsy, 
non-object-oriented first, next style of iteration.

One of the most basic operations used on containers is iteration. To iterate over a container is to visit each element in the 
container. Iteration usually entails executing a function on one or more of the items in a container. 



Iteration is only part of the operation you perform on container objects. Often you want to know if a certain object is in a 
container, or locate a particular object, or find the first or last item that satisfies some condition. ObjectWindows 2.0 
containers have member functions like FirstThat(), LastThat, ForEach()and Find() that do support these kinds of actions. 
MFC has no such functions.

Iteration with ObjectWindows
ObjectWindows 2.0 has an entire class hierarchy of container iterators, making it easy to iterate over a container. The 
notation is invariant for all the container types, so you can iterate over a Stack the same way you iterate over an Array. 
The following code shows a brief example of container iteration:

// create two short-hand types
typedef TSVectorImp<string> vector;
typedef TSVectorIterator<string> iterator;
vector names;

// add some names to the container
numbers.Add( string("Albert") );
numbers.Add( string("Victoria") );
// ...

// iterate over the container, and print out the contents
iterator iter(vector);
while (iter)
  os << iter++;

You create an iterator by passing it a reference to the container you wan to iterate over. The while loop checks the value 
of iterator, and when the value is 0, iteration stops. The Current() member function returns a reference to the next item in 
the container.

Iteration with MFC

MFC handles iteration the way C programmers used to iterate over a DOS directory. There is no concept of iterator class, 
and each container type has a function to get it first item, and the next item. The following code shows how iteration 
would work with a sample list container:

CNameList myList;  // assume CNameList contains CString pointers

// get the first item in the list
POSITION pos = myList.GetHeadPosition();

// iterate over all the list elements
while (pos) {
  CString* pName = (CString*) myList.GetNext(pos);
  // do something with the CString ...
}

Although the code is short, it has two problems: there are two functions to call during the course of iteration 
(GetHeadPosition() and GetNext() ), and typecasting is necessary. But there is a much bigger problem, which isn't apparent 
in the code above: each container type has a different iteration method, involving different function calls. For example, to
iterate over a Map, you would use the code:

CMapStringToString couples; // the map associates CStrings to CStrings

POSITION pos = couples.GetStartPosition();

while (pos) {
  CString* husband;
  CString* wife;
  couples.GetNextAssoc(pos, husband, wife);
  // use the two CString values...
}

Containers of type Array are iterated with yet another procedure, using C-style loops with array indices, rather than an 



iterator object. ObjectWindows 2.0 does allow you to iterate over arrays using the array index, but the preferred manner is
through iterator objects.  Using different procedures, as is required by MFC, means that changing a container type, such 
as from a list to an array, requires a great deal of recoding.  The ObjectWindows containers, by contrast, are easy to 
interchange.

Streamable Objects

Quick Summary: ObjectWindows provides an object-oriented versus a C-style approach to persistent objects.  The 
ObjectWindows approach is simple and uses the familiar C++ streams constructs.  MFC's persistent objects are further 
limited to disk files only and use a non-standard serialization approach.

Persistence is an attribute of objects. Persistent objects have the ability to save and restore themselves from a stream 
(typically a file). Persistence can be applied to single objects, to groups of objects, or even to an entire application. 
ObjectWindows and MFC offer support for persistence, but while ObjectWindows takes an OOP approach, MFC takes a 
C approach. The following sections discuss persistence in more detail.

The ObjectWindows Approach
Quick Summary: ObjectWindows persistent objects act just like C++ streams making them familiar and standard.  They 
also support in-memory streams not just disk files.

Streaming is based on a global stream manager and a class hierarchy of persistent file streams. To stream an object, you 
create an output persistent stream object, then insert the object into it, using standard C++ stream notation, like this:

TMyData myData;  // an arbitrary object that supports persistence

// create the output stream
ofpstream os("DATA.BIN");

// stream the object out
os << myData;

With this simple code, an object of type myData is streamed out. Behind the scenes, the stream manager is at work. The 
manager handles the non-trivial details of ensuring that pointers to a objects are streamed out correctly, so they can be 
restored when streaming objects back in. To stream an object in, the following code could be used:

// create a temporary "empty" object
TMyData myData(streamableInit);

// open the input stream
ifpstream is("DATA.BIN");

// stream the object in
is >> myData;

Objects that are streamable need to supply a bit of support to the stream manager, because the manager is responsible for 
coordinating the streaming of objects at a high level, and does not know how to stream each object at the bit level. To 
stream an object in and out, the stream manager makes calls to the object's nested streamer's Read() and Write() functions. 
These functions invoke the corresponding functions in their base class, then add code to read and write those data 
members that were not inherited. To completely support persistence, a class must only satisfy the following conditions:

1 - Be derived from class TStreamableBase.
2 - Its declaration must include the macro DECLARE_STREAMBLE.
3 - Its code must include the macro IMPLEMENT_STREAMBLE.
4 - It must have Streamer::Read() and Write() member functions.



ObjectWindows doesn't limit you to streaming with file streams. You can also create in-memory streams, of type ipstream 
or opstream, attached to strstreambuf buffers, and use them  just like you would a file. You can stream an object out to an 
in-memory opstream object, and create multiple copies of the object by streaming it back in repeatedly from an ipstream 
stream object. The following code shows how to make a copy of a window through an in-memory stream:

  TWindow* window = new TWindow(NULL, "");
  strstreambuf buffer;

  // stream the object out
  opstream out(&buffer);
  out << window;

  // stream the object back in
  ipstream in(&buffer);
  TWindow* newWindow;
  in >> newWindow;

You aren't limited to TWindow-derived objects with streaming. Any class objects that satisfy some basic requirements can
be streamed. 

Streaming is a conceptually simple subject, and ObjectWindows makes it also simple to implement, allowing you to use 
familiar stream notation to stream objects in or out. ObjectWindows supports streaming to generalized streams, allowing 
you to stream objects to disk files, to modems, to pipes and in-memory streams. 

MFC has only limited support for streams dealing with disk files.

The MFC Approach
Quick Summary: MFC's serialization is complex, doesn't user standard stream constructs and is limited to disk files.

MFC calls the process of streaming objects in and out serialization. MFC uses a technique that is much more complicated
than that in ObjectWindows. To begin, persistence is not built into a separate class that you can derive a class from 
through multiple inheritance. All the support for persistence is built into class CObject, from which most MFC objects are 
derived. Persistent classes must include the macro DECLARE_SERIAL in their declarations and override the member 
function CObject::Serialize(). You also have to declare a default constructor.  Internally, MFC handles the streaming in of 
objects through a relatively obscure class of type CRunTimeClass, which is supported through (what else?) a series of 
macros, and aids in identifying types at runtime.

MFC persistence doesn't work with actual streams. Instead, CArchive objects are used, which support file reading and 
writing. Curiously, CArchive is not derived from the class CFile, even though its purpose is to deal with files. When an 
object is streamed in or out, MFC calls the object's Serialize() member function, passing it a CArchive reference. You then 
call the member function CArchive::IsStoring() to determine whether to read or write the object to the archive, using code 
like this:

void CMyType::Serialize(CArchive& ar)
{
  if (ar.IsStoring() ) {
    // write the object to the archive
  }

  else {
    // read the object
  }
}

To initiate a serialization operation, you need to create a CFile object, open the file, create a CArchive object, then use the 
insertion and extraction operators. To stream out an object, you would use code like this:

// create the archive
CFile myFile;
myFile.Open("DATA.BIN", CFile::modeWrite);
CArchive ar(&myFile, CArchive::store);



// stream an object out
CMyType myType; // assume CMyType is serializable
ar << myType;

The way files and archive objects are treated mirrors the way a C programmer would handle DOS files. Its seems 
redundant that you have to tell both the CFile and the CArchive object that you want to perform an output operation. To 
stream an object back in, you would use code like this:

// create the archive
CFile myFile;
myFile.Open("DATA.BIN", CFile::modeRead);
CArchive ar(&myFile, CArchive::load);

// stream an object in
CMyType myType; // assume CMyType is serializable
ar >> myType;

Class CFile supports the bulk of file management. Microsoft completely ignored the existence of standard C++ streams 
when it designed MFC serialization. CFile is a big and monolithic class, making no use of inheritance, and providing a 
seemingly redundant wrapper around DOS files.

Clipboard Encapsulation

Quick Summary: ObjectWindows supplies clipboard support, whereas MFC does not.

ObjectWindows manages the clipboard through a class, MFC doesn't. ObjectWindows also has a clipboard viewer class, 
called TClipboardViewer, to let you browse the contents of the Windows clipboard. 

Using ObjectWindow's class TClipboard is easy, because ObjectWindows covers most of the obscure details. For example,
to copy a bitmap to the clipboard, you would use code like this:

void TMyindow::CmCopy()
{
  // create the clipboard object
  TClipboard clipboard;
  
  // create a TBitmap object
  TBitmap myBitmap(...);

  // move the bitmap to the clipboard
  if (clipboard.EmptyClipboard() )
    TBitmap(myBitmap).ToClipboard(clipboard);

  // we're done, destructor automatically closes
}

You can copy TPalette and TDib objects to the clipboard using the same notation. Pasting data from the clipboard is just as
easy. The following code shows how you would paste a TBitmap into your application:

void TMyWindow::CmPaste()
{
  TClipboard clipboard;
  if (!clipboard) return;

  TBitmap* myBitmap;

  if (clipboard.IsClipboardFormatAvailable(CF_BITMAP))
    myBitmap = new TBitmap(TBitmap(clipboard) );
}

Pasting TPalette, TDib, and TMetaFilePict objects is just as easy.



Diagnostics and Debugging

Quick Summary:  ObjectWindows provides a rich and extendible set of diagnostics, where MFC's diagnostics are limited. 
ObjectWindows lets you create multiple levels of diagnostic messages greatly aiding in the debugging process.  These 
diagnostics can be interactively modified at run time, providing further flexibility during testing.

ObjectWindows 2.0 has a number of built-in features to aid in debugging and diagnosing problems in your code. There 
are essentially two levels at which ObjectWindows provides this support: through a series of macros, and through special 
diagnostic classes.

Macros have been used since ObjectWindows 1.0 to produce error messages. The macros PRECONDITION and CHECK 
support argument checking similar to the ASSERT macro. Error reporting is controlled through the symbol __DEBUG. 
By assigning values to __DEBUG, such as

#define __DEBUG 1

you can determine the amount of error checking you want.  PRECONDITION should be used for conditions that must be 
true in order for the function to work correctly. Typically this is used to validate parameters. CHECK is used to be sure 
that internal computations make sense. When developing a library, both should be enabled. When the library is shipped to
users the diagnostic version should have PRECONDITIONs enabled, since these will detect misuse of the library. 

ObjectWindows 2.0 also has diagnostic message  system for errors. Built-in diagnostic messages are divided into 6 
categories, though programmers can add any number of additional categories: 

1 - application-related message
2 - Window-related messages
3 - Window-message tracing
4 - GDI messages
5 - GDI orphan control messages
6 - Document View messages

GDI orphans are GDI objects that are created, but never destroyed. ObjectWindows has the ability to automatically 
destroy left-over GDI objects, reporting such occurrences in category 5 messages. 

Control over the 6 diagnostic message categories is through the file ObjectWindows.INI, in which there are profile strings
that deal with diagnostic levels. Each category can be enabled independently of the others and is assigned a diagnostic 
level, using an integer value between 0 and 255.  The error messages are sent out through the Windows programs 
OX.SYS or DBWIN.EXE. Diagnostic messages are output with the macro TRACEX, like this:

// setup a diagnostic group for special conditions
DIAG_DEFINE_GROUP_INIT(ObjectWindows_INI, MyGroup, 1, 0);

void TMyWindow::SetupWindow()
{
  TRACEX(MyGroup, 2, "Entering TMyWindow::SetupWindow()");

  TMyWindow::SetupWindow();

  // do special processing
  TRACEX(MyGroup, 2, "Beginning special processing");
}

The macros TRACEX and WARNX write to output streams, and allow you to use stream inserters and manipulators to 
output messages, without using the old printf  formatted string notation. With TRACEX you can have expressions like:

int value = 1;
float number = 3.14;
TRACEX(MyGroup, 2, "The value is " << value << "and the number is " << number);

The macro DIAG_DEFINE_GROUP sets up a new diagnostic group associated with file ObjectWindows.INI, and enable 
the group diagnostics. The group is associated with the file ObjectWindows.INI, and diagnostic error messages are output



to OX.SYS or DBWIN.EXE with the TRACEX macro. The macro references the MyGroup diagnostic group, issuing an 
error message at diagnostic level 2.

ObjectWindows diagnostic groups are very flexible, not only because they let you organize different types of errors, but 
also because each type can be tailored specifically. But there's more: the diagnostic messages are a function of the 
diagnostic level of each category, and the level can be changed at runtime  -- without recompiling any code. All you have
to do is edit the ObjectWindows.INI file, adjusting the levels to your requirements, and then restart your application. 
ObjectWindows 2.0 ships with a small utility called DIAGXPRT.EXE that allows you to set the ObjectWindows 
diagnostic levels and display diagnostic output messages, obviating for the need of OX.SYS and DBWIN.EXE.

MFC has only minimal diagnostics support, with no groups or levels. Diagnostics messages are produced through the two 
macros ASSERT and TRACE macros. ASSERT messages are always enabled, TRACE message aren't. The TRACE 
macro also has 3 cousins: TRACE1, TRACE2 and TRACE3, each taking a formatting string (like printf does), and a 
certain number of additional parameters. No streams are used by the macros, forcing you to revert to C-style printf 
statements.

To enable MFC TRACE messages, there is whole procedure you must follow. First you define the _DEBUG identifier. 
Then you recompile all your code. Then you run the utility function TRACER.EXE, which prompts you for the categories
of messages you wish to have diagnostic message for. Then you run your program. To turn off TRACE messages, you 
must undefine the _DEBUG macro, recompile your code, and run TRACER.EXE again.

MFC also supports a runtime tracing function, called afxDump(). To use this function, you put it a conditionally compiled 
section of code, like this:

#ifdef _DEBUG
afxDump("Dump this");
#endif

Of course you need to recompile your code to switch afxDump() messages on or off.

OLE 2.0 Encapsulation

Quick Summary: To help implement OLE 2.0 applications, MFC 2.5 encapsulates various interfaces of OLE 2.0 into 
existing or new MFC 2.5 classes.  Developers are only required to fill in a handful of overridable methods in those 
classes through inheritance to obtain OLE 2.0 features.  OWL 2.0 does not yet include an encapsulation of OLE 2.0.

The MFC 2.5 OLE 2.0 classes include support for:
n in-place activation and editing
n open editing
n drag-and-drop
n OLE automation support
n clipboard copy, paste and paste link of OLE objects
n container object verb menu initialization
n automatic registration of server applications
n managing lists of embedded objects
n managing lists of actively linked objects
n user interface classes for handling standard OLE operations
n classes for signaling exceptional conditions during OLE operations

MFC 2.5's implementation of OLE 2.0 encapsulation has some limitations.  The classes violate the OLE 
reference counting model which allows destruction prior to removal of all references which can lead to 
application instability and crashes.  There is no support for localization.  There is no support for building 
legacy applications into OLE-enabled applications.

OLE 2.0 classes are currently under development.  A key advantage to the OWL approach is the ease with which existing
applications can be OLE 2.0 enabled.



OLE 2.0 Visual Editing Classes
Quick Summary: MFC 2.5 has added OLE 2.0 visual editing classes that help build visual editing servers, containers or 
both.

MFC 2.5's OLE 2.0 visual editing classes support in-place editing, fully opened editing, clipboard copy, paste and paste 
link of OLE objects, and drag and drop visual editing.  The visual editing classes help build visual editing servers, 
containers, or both.  

OLE 2.0 Automation Classes
Quick Summary: MFC 2.5 has added OLE 2.0 automation classes that help expose member functions and variables of C+
+ classes to other applications via OLE automation.

Base functionality of these classes is to expose member functions and member variables of C++ classes to other 
applications via OLE automation.  New methods and properties can be added to application-specific classes that support 
OLE automation as well.

MFC 2.5's automation support only allows for single inheritance which is very restrictive.  The automation support uses 
highly platform and compiler-dependent code which violates the OLE 2.0 guidelines for portability.  Only classes derived
from CCommandTarget can be automated.  Most MFC classes derive from CCommandTarget which has been expanded 
to contain data members and virtual functions supporting automation.  This automation baggage is now carried around 
even for classes not using OLE interfaces.

Database Encapsulation

Quick Summary: MFC 2.5 has added a thin layer of classes to support database application development.

New classes have been added to MFC to support the creation of database applications that allow the entering, displaying 
and updating of ODBC data sources.

Limitations in this database support include the lack of any table viewer control.  Due to the use of the aforementioned 
limited DDX, it is not possible to have validation or computations during data transfers.

ObjectWindows 2.0 does not yet encapsulate database classes.

Accessing Data Sources
Quick Summary:  MFC 2.5 now provides classes for accessing ODBC data sources.

MFC 2.5 provides classes for accessing ODBC data sources.  These classes provide for automatically exchanging data 
between a C++ recordset object and columns of a table or query result.  Dynasets as well as recordsets are supported.  
Database transactions such as commit and rollback are supported.  Common database access functions such as adding, 
changing and deleting individual records are supported as well.

Database Forms
Quick Summary: MFC 2.5 has a CRecordView class that supports form design which is then used with data exchange to 
transfer data to and from some database record.

A new MFC 2.5 class called CRecordView has been added that supports database form design.  Text fields and other 
controls can be added to turn a dialog template into a database form.  The existing MFC 2.5 data exchange mechanisms 
— DDX and DFX — are then used to exchange data between this form and some record in the underlying database.



Conversion
OWL and MFC have both evolved since their initial versions.  Borland's commitment is to make this transition as easy as 
possible.  A conversion utility is provided called OWLCVT to convert source code for OWL 1 to OWL 2 that makes most
changes automatically.  This allowed the ObjectWindow's designers to create a major enhancement that is not just an 
incremental improvement over the previous version.

MFC-ObjectWindows conversion guide

This section shows how to convert MFC code to equivalent ObjectWindows code. Keep in mind that there are many 
ObjectWindows features that have no equivalent in MFC.

General Windows

Topic MFC Code ObjectWindows Code

Declaring response 
tables

class CMyWnd: public CWnd
{
  // ...
protected:
  afx_msg int
    OnCreate(LPCREATESTRUCT);
  afx_msg void OnCmd1();
  afx_msg void OnCmd2();
 DECLARE_MESSAGE_MAP()
};

class TMyWnd : public TWindow {
public:
  // ...
  void EvKeyDown(UINT, UINT,
                 UINT);
  void CmCommand1();
  void CmCommand2();
DECLARE_RESPONSE_TABLE(
      TMyWnd);
};

Defining response 
tables

BEGIN_MESSAGE_MAP(CMyWnd, CWnd)
  ON_WM_CREATE()
  ON_COMMAND(IDM_1, OnCmd1)
  ON_COMMAND(IDM_2, OnCmd2)
END_MESSAGE_MAP()

DEFINE_RESPONSE_TABLE1(
   TMyWnd, TWindow)
 EV_WM_KEYDOWN,
 EV_COMMAND(CM_1, CmCmd1),
  EV_COMMAND(CM_2, CmCmd2),
END_RESPONSE_TABLE;

Creating a Window CMyWnd* myWnd = new CMyWnd;
myWnd->Create(...);

TMyWindow* w = new TMyWindow(...);
w->Create();
//children are autocreated by parent
//MainWindow is autocreated by app

Creating an MDI 
frame window

class CMyWnd : 
 public CMDIFrameWnd {...};

class CMyApp : 
    public CWinApp {
public:
// ...
 virtual BOOL InitInstance() {
   CMyWnd* w = new CMyWnd;
   if (!w)->LoadFrame(IDRES) )
     return FALSE;
   w->ShowWindow(m_nCmdShow);
   w->UpdateWindow();
   m_pMainWnd = w;
   return TRUE;
  }

class TMyWnd : 
  public TMDIFrame {...};

class TMDIFileApp : 
    public TApplication {
public:
 void InitMainWindow() {
  Frame = new TMDIFrame(..);
  Frame->Attr.AccelTable =
         IDRES;
  Frame->SetMenuDescr(...);
  MainWindow = Frame;
 }
};



};

Creating an SDI 
frame window

class CMyWnd : 
  public CFrameWnd {...};

class CMyApp : public CWinApp {
public:
// ...
  virtual BOOL InitInstance(){
    CMyWnd* w = new CMyWnd;
    if (!w->LoadFrame(IDRES) )
      return FALSE;
    w->ShowWindow(m_nCmdShow);
    w->UpdateWindow();
    m_pMainWnd = w;
    return TRUE;
  }
};

class TMyWnd :
  public TFrameWindow {...};

class TSDIFileApp : public
TApplication {
public:
 void InitMainWindow() {
  Frame = new TFrameWindow(...);
  Frame->Attr.AccelTable =
      IDRES;
  Frame->SetMenuDescr(...);
  MainWindow = Frame;
 }
};

Creating documents class CMyDoc : 
  public CDocument {..};

class TMyDoc : public
  TDocument {...};

Creating Views class CMyView : public CView {..}; class TMyView : 
public TView
{...};

Creating Doc/View 
templates

class CMyWnd : public
   CMDIChildWnd {..};

class CMyApp : public CWinApp {
public:
// ...
 virtual BOOL InitInstance() {
  AddDocTemplate(new
   CMultiDocTemplate(IDRES,
    RUNTIME_CLASS(CMyDoc),
    RUNTIME_CLASS(CMyWnd),
    RUNTIME_CLASS(CMyView)));

  CMyWnd* w = new CMyWnd;
  if (!w->LoadFrame(IDRES) )
    return FALSE;
  w->ShowWindow(m_nCmdShow);
  w->UpdateWindow();
  m_pMainWnd = w;
 }
};

DEFINE_DOC_TEMPLATE_CLASS(
  TMyDocument, TMyView, 
  MyTemplate);
MyTemplate btpl("My files",
   "*.txt", 0, 
   "TXT", dtAutoDelete);

class TMyApp : public TApplication {
public:
// ...
void  InitMainWindow() {
  SetDocManager(new TDocManager(dmSDI 
| dmMenu));
  }
};

Adding a toolbar class CMyWnd : 
  public CFrameWnd {
// ...
protected:
  CToolBar m_Bar;
};

int CMyWnd::OnCreate(
 LPCREATESTRUCT lpcs)
{
  if (CFrameWnd::OnCreate(
     lpcs) == -1)
    return -1;
  if (!m_Bar.Create(this)
  || !m_Bar.LoadBitmap(IDRES) )
    return -1;
  return 0;
}

  TControlBar* cb = 
      new TToolBox(0);
  cb->Insert(*new
   TButtonGadget(CM_TOOL1,
   CM_TOOL1,
   TButtonGadget::Exclusive,
   TRUE,
   TButtonGadget::Down));
  cb->Insert(*new 
TButtonGadget(CM_TOOL2,
  CM_TOOL2,
  TButtonGadget::Exclusive,
  TRUE));

  frame->Insert(cb, Top);

 }
};

Adding a status bar class CMyWnd: public CFrameWnd
{
// ...
protected:
  CStatusBar  m_Bar;
};

int CMyWnd::OnCreate(

class TMyApp : public TApplication {
public:
 void InitMainWindow() {

  TStatusBar* sb = 
    new TStatusBar(0,
     TGadget::Recessed,
     TStatusBar::CapsLock |



 LPCREATESTRUCT lpcs)
{
  if (CFrameWnd::OnCreate(
    lpcs) == -1)
    return -1;
  if (!m_Bar.Create(this) ||
      !m_Bar.SetIndicators(
       indicators,

sizeof(indicators) /
          sizeof(UINT) ) )
    return -1;
  return 0;
}

     TStatusBar::NumLock |
     TStatusBar::Overtype);
  Frame->Insert(*sb, 
   TDecoratedFrame::Bottom);
 }
};

Iterating over child 
windows

void CMyWnd::Iterate()
{
 for (CWnd* w = GetTopWindow();
      w != NULL;
      w = w->GetNextWindow()) {
   // use child window 'w'
 }
}

static void f(TWindow* w,
              void*)
{...do something with 'w'}

void TMyWindow::g()
{   ForEach(f); }

Locating a child 
window

CWnd* CMyWnd::FindChild()
{
 for (CWnd* w = GetTopWindow();
      w != NULL;
      w = w->GetNextWindow()) {
  // see if child window found
  if (w is the right window)
    return w;
 }
 return 0;
}

...useChild()
{
  CWindowfirst = FindChild;
...
}

static BOOL f(TWindow* win,
              void*)
{
  return(win satisfies some
      condition);
}

void TMyWindow::useChild()
{
  TWindow* first =
      FirstThat(f);
 
}

Finding the active 
MDI child window

class CMyWnd: public CMDIFrameWnd {
// ...
public:

  void f() {
    CMDIChildWnd* w = 
            MDIGetActive();
    if (!w) return;
    // use w ...
  }
};

class TMDIFileApp : public TApplication {
public:
// ...
  MDIClient* Client;

protected:
  void f() {
  TMDIChild* w = 
Client->GetActiveMDIChild();
  if (!w) return;
  // use w..
}
};



Dialog boxes and Child Controls

Topic MFC Code ObjectWindows Code

Creating a modal 
dialog box

CDialog dlg(IDD_ABOUTBOX);
dlg.DoModal();

TDialog(this,  ID).Execute();

Creating a modeless 
dialog box

void CMyWindow::Tools() {
  CDialog dlg(IDD_TOOLS);
  dlg.Create(this);
}

void TMyWindow::Tools() {
  TDialog(this,ID).Create();
}

Initializing the 
controls in a dialog 
box

class CMyDlg : public CDialog {
public:
// ...
  //{{AFX_DATA(CMyDlg)
    int m_Value1;
    int m_Value2;
  //}}AFX_DATA
protected:
  DECLARE_MESSAGE_MAP()
};

void CMyDlg::DoDataExchange(
  CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_EDIT1,
          m_Value1);
 DDV_MinMaxInt(pDX, m_Value1, 
               -10, 20);
 DDX_Text(pDX, IDC_EDIT2,
          m_Value2);
 DDV_MinMaxInt(pDX, m_Value2,
               0, 100);
}

struct {
  // transfer buffer
  // ...
} Buffer

class TMyDlg : public TDialog {
public:
  // ...
  TMyDlg(...) {
  // .. create controls
  SetTransferBuffer(&Buffer);
 }
};

Reading the controls 
in a dialog box

Same as above. Same as above

Setting a dialog's 
child control

SetDlgItemInt(nID, value); TEdit(...).SetText("this");

Reading a dialog's 
child control

CEdit& edittedData = 
  *(CEdit*) GetDlgItem(nID);

TEdit* e = new TEdit(...);
char name [80];
e->GetText(name, 80);

Validating Data DDV functions. See code under "Initializing the 
control in a dialog box".

TEdit* e = new TEdit(...);
e->SetValidator(new 
 TPXPictureValidator("&&&");

Bitmapped buttons class CMyDlg : public CDialog {
public:
  enum {IDD = IDD_BITMAPDLG};
  CMyDlg();
// ...
protected:
  CBitmapButton button1;
};

CMyDlg::CMyDlg()
      : CDialog(CMyDlg::IDD) 
{
  if (!button1.LoadBitmaps(
     "Up", "Down", "Focus") ) {
   TRACE("Problem!");

no code necessary



   AfxThrowResourceException();
  }
}



GDI Operations

Topic MFC Code ObjectWindows Code

Creating a pen CPen pen;
pen.CreatePen(PS_SOLID, 1,
              RGB(0,0,0));

TPen pen(TColor(0, 0, 0) );
or
TPen pen(TColor::Black);

Drawing a line void CMyWnd::Line(CDC& dc)
{
  CPen pen;
  pen.CreatePen(PS_SOLID, 1,
                RGB(0,0,0) );
  CPen* pOldPen = 
    dc.SelectObject(&pen);
  dc.MoveTo(10, 10);
  dc.LineTo(20, 30);
  dc.SelectObject(pOldPen);
}

void TMyWnd::Line(TDC& dc)
{
 TPen pen(TColor(0, 0, 0) );
 dc.SelectObject(pen);
 dc.MoveTo(0, 100);
 dc.LineTo(100, 20);
}

Painting with a brush void CMyWnd::Box(CDC& dc)
{
  CBrush brush(RGB(0, 0, 0) );
  CBrush* pOldBrush = 
    pDC->SelectObject(&brush);

  dc.Rectangle(30, 30, 
               100, 100);
  dc.SelectObject(pOldBrush);
}

void TMyWnd::Box(TDC& dc)
{
 dc.SelectObject(
   TBrush(Color:Black));
 dc.Rectangle(0,20,30,400);

}

Creating fonts void CMyWnd::Font(CDC& dc)
{
 LOGFONT lf;
 memset(&lf, 0, sizeof(lf));
 lf.lfHeight = 20;
 lf.lfWeight = FW_BOLD;
 strcpy(lf.lfFaceName,
        "Arial");
 CFont font;
 font.CreateFontIndirect(&lf));
}

void TMyWnd::Font(TDC& dc)
{
 TFont font("Arial", 20, FW_BOLD);
}

Drawing text void CMyWnd::DrawText(CDC& dc)
{
  CRect rect(20, 30, 100, 200);
  dc.DrawText("Text", -1, rect,
              DT_CENTER);
}

void TMyWnd::Text(TDC& dc)
{
  dc.DrawText("Text", 
   -1, TRect(0, 0, 10, 200),
  DT_CENTER);
}

Creating bitmaps CBitmap bm;
bm.LoadBitmap("MYBITMAP");

TBitmap* bm = new TBitmap(
  *GetModule(), "ID");

Displaying bitmaps void CMyWnd::DrawBM(CDC& dc)
{
 CBitmap bm;
 bm.Create("MYBITMAP");
 CBitmap* pbmOld;
 CDC dcMem;
    
 dcMem.CreateCompatibleDC(&dc);
 pbmOld = 
   dcMem.SelectObject(&bm);

 dc.BitBlt(100, 100, 50, 50,
           &dcMem, 0, 0,
           SRCCOPY);
 dcMem.SelectObject(pbmOld);
 dcMem.DeleteDC();
}

void TMyWnd::Draw(TDC& dc)
{
  TBitmap* bm = new 
TBitmap(*GetModule(), "ID");
  TMemoryDC memoryDC(dc);
  memoryDC.SelectObject(
      *Bitmap);
  TRect rect(0, 0, 40, 40);
  dc.BitBlt(rect, memoryDC, 
    TPoint(0,0), SRCCOPY);
}





Containers

Topic MFC Code ObjectWindows Code

Creating an array CByteArray myArray; TIArrayAsVector<int>
     myArray(5,0,5);;

Copying an array CByteArray myArray;    // array to be copied
CByteArray copyArray;  // array copied into

for (int i=0; i < myArray.GetSize(); i+
+)

  copyArray [i] = myArray [i];

TVectorImp<int> myArray;
TVectorImp<int> copyArray;
for (int i = 0; 
     i < myArray.Count();
     i++)
 copyArray [i] = 
    myArray [i];

Adding elements to 
an array

CByteArray myA;
BYTE value = 2;
myA.Add(value);

TArrayAsVector<int> myA(5,0,5);
int value = 5;
myA.Add(value);

Removing elements 
from an array

CByteArray myArray;
myArray.RemoveAt(10);

TArrayAsVector<int> myArray(5,0,5);
myArray.Detach(3);

Searching an array 
for an item

CByteArray myArray;
int FindItem(BYTE value)
{
  for (int i=0; i < myArray.GetSize(); i++) {

 if (myArray [i] == value)
return i;

  }
  return -1;
}

TArrayAsVector<int>
   myArray(5,0,5);
int value = 5;
int index = myArray.Find(value);

Deleting the items in 
an array

CStringArray myArray;

void DeleteArray()
{
  for (int i=0; i < myArray.GetSize(); i++)

 delete myArray [i];
  myArray.RemoveAll();
}

TArrayAsVector<int> myArray(5,0,5);
myArray.Flush();

Creating a list CStringList myList; TListImp<string> myList();

Copying a list CStringList myList;  // list
                     // to copy
CStringList copyList; // list
                   // copied to

void CopyList()
{
  POSITION pos = myList.GetHeadPosition();
  while (pos)
     copyList.AddTail(
            myList.GetNext(pos) );
}

TListImp<string> myList;
TListImp<string> copyList;

static void DoCopy(
   string& s, void*)
{copyList.Add(s);}

void f()
{ myList.ForEach(DoCopy, 0); }

Adding items to a list CStringList myList;
myList.AddTail("Hello");
myList.AddHead("Good-bye");

TListImp<string> myList;
myList.Add("Test");

Removing items 
from a list

CStringList myList;

void RemoveItem(CString& target)
{
  POSITION pos = myList.GetHeadPosition();
  while (pos) {

TListImp<string> myList;
myList.Detach("Test");



 CString& str = myList.GetNext(pos);
 if (str == target)

myList.RemoveAt(pos);
delete str;

  }
}

Searching a list for an
item

CStringList myList;

BOOL HasString(CString& target)
{
  POSITION pos = myList.GetHeadPosition();
  while (pos) {

 CString& str = myList.GetNext(pos);
 if (str == target)

return TRUE;
  }
  return FALSE;
}

TListImp<string> myList;
if (myList.Find("Test") ) {
  // the item was found...
}

Deleting all the items
in a list

CStringList myList;

void DeleteList()
{
  POSITION pos = myList.GetHeadPosition();
  while (pos)

 delete myList.GetNext(pos);
  myList.RemoveAll();
}

TListImp<string> myList;
myList.Flush();

Creating a dictionary CMapStringToOb myMap; // create a hashable class
class HashString : public string {
public:
 HashString() : string() {}
 HashString(const char* s) :
     string(s) {}
 unsigned HashValue() const 
{ return hash(); }
};

void f()
{   typedef
 TDDAssociation<HashString, HashString> 
symbol;

 TDictionaryAsHashTable
<symbol> Dictionary;

Copying a dictionary CMapStringToOb myMap;  // map to copy
CMapStringToOb myCopy; // map copied to

POSITION pos = myMap.GetStartPosition();
while (pos) {
  CString string;
  CObject* pObject;
  myMap.GetNextAssoc(pos, string, pObject);
  copyMap.SetAt(string, pObject);
}

typedef TDDAssociation
<HashString, HashString>
   symbol;
typedef 
  TDictionaryAsHashTable
  <symbol> dictionary;
dictionary myTable;
dictionary copyTable;

static void DoCopy(
  symbol& s, void*)
{ copyTable.Add(s); }

void f()
{ myTable.ForEach(
   DoCopy, 0);
}

Adding items to a 
dictionary

CMapStringToOb myMap;
CString string;
CObject* pObject;
myMap.SetAt(string, pObject);

Table.Add(Symbol("K", "U"));

Removing items 
from a dictionary

CMapStringToOb myMap;

void RemoveItem(CString& str)
{
  CObject* pObject;

Table.Detach(Symbol("K", "U"));



  if (!myMap.Lookup(str, &pObject) )
 return;

  myMap.RemoveKey(str);
  delete str;
  delete *pObject;
}

Searching a 
dictionary for an item

CMapStringToOb myMap;

BOOL HasItem(CString& str)
{
  CObject* pObj;
  return myMap.Lookup(str, &pObj) ;
}

symbol* r = Table.Find(Symbol("K", "U"));
if (r) {
   // found...
}

Deleting all the items
in a dictionary

CMapStringToOb myMap;

POSITION pos = myMap.GetStartPosition();
while (pos) {
  CString string;
  CObject* pObject;
  myMap.GetNextAssoc(pos, string, pObject);
  delete pObject;
}
myMap.RemoveAll();

dictionary myTable;
myTable.Flush();



Persistence

Topic MFC Code ObjectWindows Code

Creating an input 
stream

CFile myFile;
myFile.Open("T.TST", CFile::modeRead);
CArchive myArchive(&myFile, CArchive::load);

ifpstream is("T.TST");

Streaming an object 
in

int i;
myArchive >> i;

int i;
is >> i;

Creating an output 
stream

CFile myFile;
myFile.Open("T.TST", CFile::modeWrite);
CArchive myArchive(&myFile, CArchive::store);

ofpstream os("T.TST");

Streaming an object 
out

int i;
myArchive << i;

int i;
os << i;

Conclusion

Both ObjectWindows and MFC are extensive application frameworks that make Windows programming easier. 
ObjectWindows is very object-oriented system, utilizing advanced C++ features such as multiple inheritance, class 
templates and exceptions handling. ObjectWindows is programmaticaly a very safe class library to program with. 
Exception handling eliminates the need to constantly check for successful resource allocation and GDI operations, 
allowing you to concentrate on what your application does than on recovering from Windows API failures. MFC is very 
little object-oriented, utilizing C language constructs pervasively. There are numerous pitfalls in MFC programming that 
can be particularly difficult to debug. For example, MFC exception handling does not properly destroy objects in the 
course of stack unwinding during exception handling. This is a fiendish trap, that MFC programmers are destined to be 
caught in. There are many other problems with MFC, such as lack of GDI orphan control and standard run-time type 
identification that collectively make MFC programming much more difficult and much less effective than 
ObjectWindows programming. 

The bottom line is productivity. ObjectWindows provides a much higher degree of abstraction from Windows details, 
allowing you to build complex system quickly and with little coding. Containers are one area in which ObjectWindows is 
spectacularly better the MFC, but the list of ObjectWindows strengths is long. ObjectWindows is better than MFC in 
handling persistence, exceptions, GDI, printing, tool palettes, dialog box child controls and debugging diagnostics -- to 
name a few. ObjectWindows is a mature C++ product, ready to take on even the toughest assignments.


	Executive Summary
	Introduction
	Quick Summary: This guide provides a detailed technical comparison of Borland's ObjectWindows 2.0 application framework and Microsoft's MFC library.

	Overview
	Quick Summary: ObjectWindows 2.0 uses a high-level object-oriented approach that offers more reusable objects and a more consistent, more robust framework.

	ANSI Compliance
	Quick Summary: ObjectWindows is completely ANSI compatible and fully exploits standard C++ facilities including templates and exceptions to increase reusability and robustness. MFC has no support for ANSI standard templates or exceptions.
	Exception Handling
	Quick Summary: Exception support in ObjectWindows is ANSI compliant and applied thoroughly and consistently throughout to give a simple, robust exception mechanism to users. MFC's exception support is clumsy, complex, non-standard and error-prone.


	try {
	// do something
	}
	catch(xmsg& msg) {
	// use the string in msg to display an error message
	}
	// we ran out of disk space!
	throw (xmsg("Disk Full!"));
	MFC Exception Handling

	CATCH (CFileException, theException) {
	if (theException->m_cause == CFileException::fileNotFound)
	...
	}
	END_CATCH
	The MFC Exception Hierarchy

	void AFXAPI AfxThrowMemoryException();
	void AFXAPI AfxThrowNotSupportedException();
	void AFXAPI AfxThrowArchiveException(int cause);
	void AFXAPI AfxThrowFileException(int cause, LONG lOsError = -1);
	void AFXAPI AfxThrowResourceException();
	void AFXAPI AfxThrowUserException();
	Problems with MFC Exception Handling
	Class string
	Quick Summary: Borland supports the ANSI standard string class; Microsoft does not use this standard, resulting in code which is non-portable and does not use ANSI exception handling.

	Templates
	Quick Summary: Borland supports ANSI standard templates to allow easier code reuse without giving up type safety. MFC doesn't use templates, resulting in code which is more error-prone and harder to re-use.

	Summary

	Message Handling
	Quick Summary: Message handling in ObjectWindows is easier to write, more flexible, and safer than MFC since it fully supports the use of multiple inheritance and is template based.
	Response Tables
	Quick Summary: Both ObjectWindows and MFC use a message dispatch table mechanism to map Windows messages to the correct C++ member function. ObjectWindows uses a C++ standard approach that is clean and simple based on C++ templates. MFC's approach is non-standard and awkward and non type-safe.  MFC is further limited to single inheritance.


	class TMyWindow : public TFrameWindow {
	public:
	// ...
	void EvTimer(UINT);
	void CmAbout();
	DECLARE_RESPONSE_TABLE(TMyWindow);
	};
	DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)
	EV_WM_TIMER,
	EV_COMMAND(CM_ABOUT, CmAbout),
	END_RESPONSE_TABLE;
	class CMyWindow : public CFrameWnd {
	public:
	// ...
	void OnTimer(UINT);
	void OnAbout();
	DECLARE_MESSAGE_MAP()
	};
	BEGIN_MESSAGE_MAP(CMyWindow, CFrameWnd)
	ON_WM_TIMER()
	ON_COMMAND(CM_ABOUT, OnAbout)
	END_MESSAGE_MAP()
	Command Enabling
	Quick Summary: ObjectWindows and MFC both have mechanisms to allow the response tables to control menu and toolbar items as focus changes.


	BEGIN_MESSAGE_MAP (CMyWindow, CFrameWnd)
	ON_UPDATE_COMMAND_UI(IDM_SELECTALL, OnUpdateSelectAll)
	ON_COMMAND (IDM_SELECTALL, OnSelectAll)
	END_MESSAGE_MAP ()
	afx_msg void CMyWindow::OnUpdateSelectAll(CCmdUI* pCmdUI)
	{
	pCmdUI->Enable(FALSE);
	}
	DEFINE_RESPONSE_TABLE1(TMyWindow, TFrameWindow)
	EV_COMMAND(IDM_SELECTALL, CmSelectAll),
	EV_COMMAND_ENABLE(IDM_SELECTALL, CmEnableSelectAll),
	END_RESPONSE_TABLE;
	void TMyWindow::CmEnableSelectAll(TCommandEnabler& CommandEnabler)
	{
	CommandEnabler.Enable(... anything to select...)
	}
	Summary

	The Document/View model
	Quick Summary: ObjectWindows makes it easier to create applications based on the document/view model by using standard ANSI templates. This also eliminates common errors that can happen using MFC's approach.
	The ObjectWindows Approach
	Quick Summary: Separating the data from its presentation is an important abstraction concept. It allows multiple views on the same data. ObjectWindows does not require that the view object be a window and viewers can be DLLs.


	DEFINE_DOC_TEMPLATE_CLASS(THexDocument, THexView, THexTemplate);
	THexTemplate MyTemplate("Hex File Viewer", "*.*", "C:\",
	*.hex", dtAutoDelete);
	void TMyApp::InitMainWindow()
	{
	DocManager = new TDocManager(dmMDI);
	}
	The MFC Approach
	Quick Summary: MFC is much more rigid and limited than ObjectWindows due to its lack of template use and because application objects must manage associations themselves.


	BOOL CMyApp::InitInstance()
	{
	// ...
	AddDocTemplate(new CMultiDocTemplate(IDR_MYFRAME,
	RUNTIME_CLASS(CHexDocument),
	RUNTIME_CLASS(CHexFrame),
	RUNTIME_CLASS(CHexView)) );
	// ...
	}
	THexTemplate MyTemplate("Hex File Viewer", "*.*", "C:\",
	*.hex", dtAutoDelete);
	Summary

	Special Window Types
	Quick Summary: ObjectWindows includes a number of special window types that facilitate the design of Windows applications. MFC has no comparable support for layout windows, and its support for toolbars, status lines and palettes is significantly more difficult to use. By having a richer set of classes, and more built-in functionality, ObjectWindows reduces the amount of code necessary to create modern user-interfaces.
	Layout Windows
	Quick Summary: Constraint driven windows are important for configurability and flexibility because their size and shape are completely driven by a set of constraints that allow them to adapt as the controlling parameters change. ObjectWindows provides this through powerful Layout Windows while MFC has no comparable capability. Layout windows are particularly important for international applications.


	#include <owlframewin.h>
	#include <owlapplicat.h>
	#include <owllayoutwi.h>
	#include <owlcolor.h>
	class TColorWindow : public TWindow {
	public:
	TColorWindow(TWindow* parent, TColor color)
	: TWindow(parent, "") {
	SetBkgndColor(color);
	Attr.Style = WS_CHILD | WS_BORDER | WS_VISIBLE;
	}
	};
	class TMyWindow: public TLayoutWindow {
	protected:
	TWindow* w1;
	TWindow* w2;
	void SetupWindow();
	public:
	TMyWindow(TWindow* parent)
	: TLayoutWindow(parent, 0) {
	Attr.Style |= WS_BORDER;
	w1 = new TColorWindow(this, TColor::LtRed);
	w2 = new TColorWindow(this, TColor::LtCyan);
	}
	};
	void TMyWindow::SetupWindow()
	{
	TLayoutWindow::SetupWindow();
	TLayoutMetrics metrics;
	// layout constraints for right window
	metrics.X.Set(lmLeft, lmPercentOf, lmParent, lmRight, 60);
	metrics.Y.Set(lmTop, lmPercentOf, lmParent, lmBottom, 60);
	metrics.Width.Set(lmRight, lmPercentOf, lmParent, lmRight, 95);
	metrics.Height.Set(lmBottom, lmPercentOf, lmParent, lmBottom, 95);
	SetChildLayoutMetrics(*w1, metrics);
	// layout constraints for left window
	metrics.X.Set(lmRight, lmSameAs, w1, lmLeft);
	metrics.Y.Set(lmTop, lmSameAs, w1, lmTop);
	metrics.Width.Absolute(100);
	metrics.Height.Absolute(20);
	SetChildLayoutMetrics(*w2, metrics);
	Layout();
	}
	class TLayoutApp : public TApplication {
	public:
	void InitMainWindow() {
	MainWindow = new TFrameWindow(0, "Using Layout Windows",
	new TMyWindow(0) );
	}
	};
	int OwlMain(int, char**)
	{
	return TLayoutApp().Run();
	}
	metrics.X.Set(lmLeft, lmPercentOf, lmParent, lmRight, 60);
	metrics.Y.Set(lmTop, lmPercentOf, lmParent, lmBottom, 60);
	metrics.Width.Set(lmRight, lmPercentOf, lmParent, lmRight, 95);
	metrics.Height.Set(lmBottom, lmPercentOf, lmParent, lmBottom, 95);
	metrics.X.Set(lmRight, lmSameAs, w1, lmLeft);
	metrics.Y.Set(lmTop, lmSameAs, w1, lmTop);
	metrics.Width.Absolute(100);
	metrics.Height.Absolute(20);
	Toolbars
	Quick Summary: ObjectWindows provides truly object-oriented toolbar classes. MFC does not use an object-based approach — it just uses bitmaps. This makes it very hard to provide programmatic control over toolbars and means ObjectWindows allows a much more configurable toolbar-based application.


	TControlBar* cb = new TControlBar(parent, direction);
	cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW));
	cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN));
	cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE));
	cb->Insert(*new TSeparatorGadget(6));
	cb->Insert(*new TButtonGadget(CM_EDITCUT, CM_EDITCUT));
	cb->Insert(*new TButtonGadget(CM_EDITCOPY, CM_EDITCOPY));
	cb->Insert(*new TButtonGadget(CM_EDITPASTE, CM_EDITPASTE));
	class CMainFrame : public CFrameWnd
	{
	// ...
	protected:
	CToolBar m_wndToolBar;
	// ...
	};
	int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
	{
	// ...
	m_wndToolBar.Create(this);
	m_wndToolBar.LoadBitmap(ID_TOOLBAR);
	// ...
	}
	static UINT BASED_CODE buttons[] =
	{
	ID_EDIT_NEW_CHECK,
	ID_EDIT_COMMIT_CHECK,
	ID_SEPARATOR,
	ID_PREV_CHECK,
	ID_NEXT_CHECK,
	ID_SEPARATOR,
	ID_FILE_PRINT,
	ID_APP_ABOUT,
	};
	SIZE buttonSize = {24, 24};
	SIZE imageSize = {18, 18};
	m_wndToolBar.SetSizes(buttonSize, imageSize);
	Status Bars
	Quick Summary: ObjectWindows provides a very object-oriented status bar class that results in a simpler yet much more customizable status bar in applications. MFC uses a limited and rigid C-based approach.


	void TMyApp::InitMainWindow()
	{
	Frame = new TDecoratedMDIFrame(...);
	TStatusBar* sb = new TStatusBar(0, TGadget::Recessed,
	TStatusBar::CapsLock | TStatusBar::NumLock | TStatusBar::Overtype);
	Frame->Insert(*sb, TDecoratedFrame::Bottom);
	}
	int CMainFrame::OnCreate(LPCREATESTRUCT lpcs)
	{
	static UINT BASED_CODE indicators[] = {
	ID_SEPARATOR,
	ID_INDICATOR_OVR,
	ID_INDICATOR_CAPS,
	ID_INDICATOR_NUM
	};
	if (CFrameWnd::OnCreate(lpcs) == -1)
	return -1;
	CStatusBar myStatusBar;
	if (!myStatusBar.Create(this) ) return;
	if (!myStatusBar.SetIndicators(indicators, sizeof(indicators)/sizeof(UINT)))
	return;
	}
	TStatusBar* sb = new TStatusBar(0, TGadget::Recessed);
	const int ID_SEARCHTEXT = 100;
	char buffer [80];
	TEdit* searchText = new TEdit(sb, ID_SEARCHTEXT, buffer, 0, 0, 60, 20, 80);
	sb->Insert(*new TControlGadget(*searchText) );
	Tool Palettes
	Quick Summary: ObjectWindows uses objects of small size built up into a class hierarchy supporting tool palettes that allows features to be changed with minimal code changes. MFC, on the other hand, exposes a very complex and error-prone approach to tool palettes.


	void TMyApp::InitMainWindow()
	{
	TWindow& client = *new TWindow(...);
	TDecoratedFrame* frame = new TDecoratedFrame(0, Name, client);
	SetMainWindow(frame);
	TToolBox* tb = new TToolBox(0);
	tb->Insert(*new TButtonGadget(CM_TOOL+0, CM_TOOL+0,
	TButtonGadget::Exclusive, TRUE, TButtonGadget::Down));
	tb->Insert(*new TButtonGadget(CM_TOOL+1, CM_TOOL+1,
	TButtonGadget::Exclusive, TRUE));
	tb->Insert(*new TButtonGadget(CM_TOOL+2, CM_TOOL+2,
	TButtonGadget::Exclusive, TRUE));
	// insert additional buttons
	// ...
	new TFloatingFrame(&client, "", tb, TRUE,
	TFloatingFrame::DefaultCaptionHeight, TRUE);
	}
	class CPaletteBar : public CToolBar {...};
	class CMyWnd : public CFrameWnd
	{
	protected:
	CPaletteBar m_wndToolPalette;
	
	// ...
	};
	int CMyWnd::OnCreate(LPCREATESTRUCT lpcs)
	{
	
	static UINT BASED_CODE palette[] =
	{
	ID_TOOL1,
	ID_TOOL2,
	// ...
	};
	if (CFrameWnd::OnCreate(lpcs) == -1)
	return -1;
	if (!m_wndToolPalette.Create(this, nLeft, nTop) ||
	!m_wndToolPalette.LoadBitmap(IDB_PALETTE) ||
	!m_wndToolPalette.SetButtons(palette,
	sizeof(palette)/sizeof(UINT), 3) )
	return -1;
	return 0;
	}
	Summary

	Dialog Box Controls
	Quick Summary: ObjectWindows treats dialog boxes and child controls just as any other object. In MFC, use of these objects requires additional overhead through the use of "helper" functions.

	textField = new TStatic(this, IDC_TEXT, 10);
	textField->SetText("Hello");
	class CMyDialog : public CDialog
	{
	public:
	// ...
	CStatic& Text() {return *(CStatic*)GetDlgItem(IDC_TEXT); }
	// ...
	};
	Text().SetWindowText("Hello");
	VBX Controls
	Quick Summary: ObjectWindows takes a very consistent approach to controls — VBX or otherwise. MFC requires special VBX handling. In addition, MFC provides no drag-and-drop support for VBX controls.


	class TMyDialog: public TDialog, public TVbxEventHandler {
	protected:
	TVBXSpreadsheet* spreadsheet;
	public:
	//...
	};
	spreadsheet = new TVBXSpreadsheet(this, ID_SPREADSHEET);
	spreadsheet->SetProp("NumberOfColumns", 5);
	int columns;
	spreadsheet->GetProp("NumberOfColumns", columns);
	DEFINE_RESPONSE_TABLE2(TMyDialog, TDialog, TVbxEventHandler)
	EV_VBXEVENTNAME(ID_SPREADSHEET,"LostFocus",EvLostFocus),
	EV_VBXEVENTNAME(ID_SPREADSHEET,"GainedFocus",EvGainedFocus),
	END_RESPONSE_TABLE;
	class CMyDialog : public CDialog
	{
	public:
	// ...
	//{{AFX_DATA(CMyDialog)
	CVBControl* m_spreadsheet;
	//}}AFX_DATA
	// ...
	protected:
	// ...
	// Generated message map functions
	//{{AFX_MSG(CMyDialog)
	afx_msg void OnLostFocus(UINT, int, CWnd*, LPVOID);
	afx_msg void OnGainedFocus(UINT, int, CWnd*, LPVOID);
	//}}AFX_MSG
	DECLARE_MESSAGE_MAP()
	};
	BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
	//{{AFX_MSG_MAP(CMyDialog)
	ON_VBXEVENT(VBN_LOSTFOCUS, ID_SPREADSHEET, OnLostFocus)
	ON_VBXEVENT(VBN_GAINEDFOCUS, ID_SPREADSHEET, OnGainedFocus)
	//}}AFX_MSG_MAP
	END_MESSAGE_MAP()
	//{{AFX_VBX_REGISTER_MAP()
	UINT NEAR VBN_LOSTFOCUS = AfxRegisterVBEvent("LostFocus");
	UINT NEAR VBN_GAINEDFOCUS = AfxRegisterVBEvent("GainedFocus");
	//}}AFX_VBX_REGISTER_MAP
	void CMyDialog::OnLostFocus(UINT uCode, int nIndex, CWnd* pWnd, LPVOID lpParams);
	VBXGen
	Enhanced Controls
	Quick Summary: ObjectWindows fully supports Borland's own 3D controls as well as those provided by Microsoft.  MFC has support for neither.

	Transferring Data
	Quick Summary: ObjectWindows provides very simple straightforward mechanisms to transfer data from dialogs to the underlying object. MFC's DDX data exchange mechanism is much more complex and therefore harder to use correctly.


	struct TTransferBuffer {
	BOOL MrTitle;
	char NameEdit [10];
	BOOL CheckBox1;
	} MyTransferBuffer;
	TMyDialog::TMyDialog(TWindow* parent) : TDialog(parent, ID_MYDIALOG)
	{
	new TRadioButton(this, ID_RADIOBUTTON, 0);
	new TEdit(this, ID_EDIT, 10);
	new TCheckBox(this, ID_CHECKBOX);
	SetTransferBuffer(&MyTransferBuffer);
	}
	SetTransferBuffer(&MyTransferBuffer);
	TMyDialog dlg; // create a local dialog box object
	// initialize the dialog's child control data
	dlg.radioButton = TRUE;
	dlg.checkBox = FALSE;
	strcpy(dlg.edit, "Name");
	// display the dialog
	if (dlg.Execute() == IDOK) {
	// use the data entered into the dialog box...
	if (dlg.radioButton)
	...
	if (dlg.checkBox)
	...
	}
	class CMyDialog : public CDialog
	{
	public:
	// ...
	//{{AFX_DATA(CMyDialog)
	int m_RadioButton;
	CString m_Edit;
	int m_CheckBox;
	//}}AFX_DATA
	protected:
	virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
	// ...
	};
	void CMyDialog::DoDataExchange(CDataExchange* pDX)
	{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CMyDialog)
	DDX_Radio(pDX, ID_RADIOBUTTON, m_RadioButton);
	DDX_Text(pDX, ID_EDIT, m_Edit);
	DDX_Check(pDX, ID_CHECKBOX, m_CheckBox);
	//}}AFX_DATA_MAP
	}
	Data Validation
	Quick Summary: ObjectWindows uses a very object-oriented approach to data validation where a validator object is attached to a control; no extra code is needed because the validator handles it. In MFC data validation is handled through a series of global functions and validation only happens during data exchange. This also makes MFC data validation dangerous and crash-prone.


	edit = new TEdit(this, 103, 10);
	edit->SetValidator(new TRangeValidator(20, 99) );
	class CMyDialog : public CDialog
	{
	// ...
	public:
	//{{AFX_DATA(CMyDialog)
	int m_nEmployeeAge;
	//}}AFX_DATA
	protected:
	virtual void DoDataExchange(CDataExchange* pDX);
	};
	void CMyDialog::DoDataExchange(CDataExchange* pDX)
	{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CMyDialog)
	DDX_Text(pDX, ID_EMPLOYEEAGE, m_nEmployeeAge);
	DDV_MinMaxInt(pDX, m_nEmployeeAge, 20, 99);
	//}}AFX_DATA_MAP
	}
	Custom Validators
	Quick Summary: Due to ObjectWindow's object-orientation, it is easy to add custom validation.  Not so in MFC where its decidedly non-trivial to do so.


	class TMyLookupValidator: public TLookupValidator {
	public:
	BOOL Lookup(const far char* str) {
	TMyDialog* dlg = TYPESAFE_DOWNCAST(TMyDialog*,Parent);
	if (!dlg) return 0;
	if (dlg->CheckBox->GetCheck() == BF_CHECKED) {
	// the checkbox is checked
	return !stricmp(str, "String 1");
	}
	else {
	// the checkbox isn't checked
	return stricmp(str, "String 2");
	}
	}
	};
	void CMyDialog::DoDataExchange(CDataExchange* pDX)
	{
	CDialog::DoDataExchange(pDX);
	//{{AFX_DATA_MAP(CMyDialog)
	DDX_Check(pDX, ID_CHECKBOX, m_bCheckBox);
	DDX_Text(pDX, IDC_EDIT1, m_strEdit);
	DDV_MyText(pDX, m_bCheckBox, m_strEdit);
	//}}AFX_DATA_MAP
	}
	void AFXAPI DDV_MyText(CDataExchange* pDX, BOOL bCheckBox, CString& strEdit)
	{
	if (bCheckBox) {
	if (strEdit == "String 1")
	return TRUE;
	else {
	AfxMessageBox("String 1 expected");
	pDX->Fail();
	return FALSE;
	}
	}
	else {
	if (strEdit == "String 2")
	return TRUE;
	else {
	AfxMessageBox("String 2 expected");
	pDX->Fail();
	return FALSE;
	}
	}
	void AFXAPI DDX_Check(CDataExchange* pDX,
	int nEditID,
	BOOL bCheckBox,
	CString& strEdit)
	{
	HWND hWndCtrl = pDX->PrepareEditCtrl(nEditID);
	if (pDX->m_bSaveAndValidate) {
	if (!GetEditData(hWndCtrl, bCheckBox, strEdit) ) {
	AfxMessageBox(IDS_INVALID_VALUE);
	pDX->Fail();
	}
	else
	SetEditData(hWndCtrl, strEdit);
	}
	MDI
	Quick Summary: ObjectWindows makes it easy to create MDI and SDI applications. MFC uses a somewhat similar approach.

	void TMyMDIApp::InitMainWindow()
	{
	MainWindow = new TMDIFrame("App Name", "MDIMenuID");
	}
	TMDIFrame(const char far* title, TResId menuResId,
	TMDIClient& clientWnd = *new TMDIClient,
	TModule* module = 0);
	MainWindow = new TMDIFrame("App Name", "MDIMenuID", *new TMyMDIClient);
	class TMySDIWindow : public TFrameWindow {
	public:
	TMySDIWindow(TWindow* parent, const char* title)
	: TFrameWindow(parent, title), TWindow(parent, title)
	{ AssignMenu(MYMENU_ID); }
	
	// ...
	};
	class TMySDIApp : public TApplication {
	public:
	TMySDIApp() : TApplication("MyApp") {}
	void InitMainWindow()
	{ MainWindow = new TMySDIWindow(0, "SDI Window"); }
	};
	class CMyMDIFrameWnd : public CMDIFrameWnd
	{
	// ...
	};
	BOOL CMyMDIApp::InitInstance()
	{
	m_pMainWnd = new CMyMDIFrameWnd;
	pMainFrame->ShowWindow(m_nCmdShow);
	pMainFrame->UpdateWindow();
	return TRUE;
	}
	class CMySDIFrameWnd : public CFrameWnd
	{
	// ...
	};
	GDI Classes
	Quick Summary: ObjectWindows provides a rich set of classes that support Windows graphics calls. The object oriented nature of ObjectWindows provides greater flexibility and scalability than MFC does.

	TPen pen(TColor::Magenta);
	TBrush brush(TColor(100, 100, 100) );
	void TMyWindow::DrawLine(TDC& dc)
	{
	// create a pen
	TPen pen( TColor(100, 200, 300) );
	
	// select it into the paint context
	dc.SelectObject(pen);
	// draw a line
	dc.MoveTo(30, 30);
	dc.LineTo(10, 100);
	// unselect the pen
	dc.RestorePen();
	}
	void CMyWindow::DrawLine(CDC* pDC)
	{
	CPen pen;
	if (!pen.CreatePen(PS_SOLID, 2, RGB(0,0,0) ) )
	return;
	CPen* pOldPen = pDC->SelectObject(&pen);
	pDC->MoveTo(30, 50);
	pDC->LineTo(40, 50);
	pDC->SelectObject(pOldPen);
	}
	Printer Support
	Quick Summary: ObjectWindows makes it easy to add printer support to an application regardless of the type of information being displayed. Printer support is far easier to use and far more flexible than with MFC and is not as restricted.

	class TMyWindow: public TFrameWindow {
	TPrinter* Printer;
	public:
	TMyWindow(TWindow* parent, const char* title)
	: TFrameWindow(parent, title),
	TWindow(parent, title)
	{ Printer = new TPrinter;
	// ...
	}
	void CmFilePrint()
	{ TWindowPrintout printout("Printout", this);
	printout.SetBanding(TRUE);
	Printer->Print(this, printout, TRUE);
	}
	// ...
	};
	void TMyWindow::PrintPage(int, TRect& rect, unsigned)
	{
	Window->Paint(*DC, FALSE, rect);
	}
	Resources
	Quick Summary: Menus, bitmaps, metafiles and fonts are richly supported in ObjectWindows in a hierarchical, flexible, object-oriented approach which gives finer control over behavior while at the same time requiring less coding. This makes ObjectWindows programmers working with resources more productive than those using MFC.
	Menus
	Quick Summary: ObjectWindows has very powerful capabilities when dealing with menus. The key concept is menu merging in which ObjectWindows takes care of the details for you while MFC forces the programmer to sweat those details.


	MyApp::InitMainWindow()
	{
	// create a main window
	MainWindow = new TMDIFrame("Main Window", 0);
	// attach a menu to the main window
	MainWindow->SetMenuDescr(TMenuDescr(IDM_MAINMENU,1,0,0,0,0,1) );
	}
	void TMyApp::CmFileNew()
	{
	TMDIChild* child = new TMDIChild(*Client, "", new TEditFile(0, 0, 0));
	child->SetMenuDescr(TMenuDescr(IDM_EDITFILE_CHILD, 0, 2, 0, 0, 0, 0));
	}
	Bitmaps
	Quick Summary: ObjectWindows provides classes for device independent bitmaps, supports clipboard operations on bitmaps and supports reading and writing bitmaps to files. MFC supports none of this.
	


	TDib* MyDib = new TDib(*GetModule(), "MYDIB");
	TBitmap* MyBitmap = new TBitmap(*GetModule(), "MyBITMAP");
	void TMyWindow::Paint(TDC& dc, BOOL, TRect&)
	{
	TMemoryDC memDC(dc);
	memDC.SelectObject(*MyBitmap);
	dc.BitBlt(0, 0, MyBitmap->Width(), MyBitmap->Height(), memDC, 0, 0, SRCCOPY);
	}
	void TMyWindow::CmPaste()
	{
	TClipboard clipboard;
	if (!clipboard) return;
	TDib* newDib = 0;
	if (clipboard.IsClipboardFormatAvailable(CF_DIB) )
	newDib = new TDib(TDib(clipboard));
	}
	void TMyWindow::CmCopy()
	{
	TClipboard clipboard;
	if (clipboard.EmptyClipboard() ) {
	TDib(MyDib).ToClipboard(clipboard);
	}
	}
	Metafiles
	Quick Summary: Windows metafiles — important efficient graphics storage objects — are encapsulated in ObjectWindows while MFC provides no support for these metafiles.


	void Image()
	{
	TMetaFileDC dc;
	TPen pen(TColor::Black);
	dc.SelectObject(pen);
	dc.MoveTo(0, 100);
	dc.LineTo(100, 100);
	TMetaFilePict picture(dc.Close() );
	}
	TPalette* palette = new TPalette((HPALETTE)GetStockObject(DEFAULT_PALETTE));
	TBitmap* bitmap = new TBitmap(*picture, *palette,
	GetClientRect().Size() );
	// use the bitmap...
	Fonts
	Quick Summary: ObjectWindows demonstrates its clean, object-oriented architecture in its support for Windows fonts. Simple constructors with default arguments do all the work. In MFC creating font objects is overly complex.


	TFont* font = new TFont("Courier New", 10);
	void TMyWindow::Paint(TDC& dc, BOOL erase, TRect& rect)
	{
	TFont font("Courier New", 10);
	dc.SelectObject(font);
	dc.TextOut(0, 0, "Text");
	}
	BOOL CreateFont(int nHeight, int nWidth, int nEscapement,
	int nOrientation, int nWeight,
	BYTE bItalic, BYTE bUnderline,
	BYTE cStrikeOut, BYTE nCharSet,
	BYTE nOutPrecision, BYTE nClipPrecision,
	BYTE nQuality, BYTE nPitchAndFamily,
	LPCSTR lpszFacename);
	LOGFONT logfont;
	memset(&logfont, 0, sizeof(logfont));
	logfont.lfHeight = 40;
	logfont.lfWeight = FW_BOLD;
	strcpy(logfont.lfFaceName, "Arial");
	CFont font;
	font.CreateFontIndirect(&logfont) );
	void CMyWindow::OnPaint()
	{
	// create a new font
	CFont font;
	font.CreateFontIndirect(...);
	// use the new font
	CPaintDC dc(this);
	CFont* pOldFont = dc.SelectObject(&font);
	dc.TextOut(10, 10, "Text");
	dc.SelectObject(pOldFont);
	}
	Containers
	Quick Summary: ObjectWindows really shows its object-oriented strength on containers. Important concepts like ownership, cleanup on deletion and iteration are key to ObjectWindows implementation that uses templates extensively. The C-style collections provided by MFC are not really worth using.
	ObjectWindows Containers
	Quick Summary: The BIDS classes provided by ObjectWindows include all the fundamental ones used in the object-oriented community. There are 11 basic types included.

	MFC Containers
	Quick Summary: MFC's contains are C-style and do not use templates and are thereby quite inflexible.  Only 3 basic types are provided.  Worse, non-standard terminology inhibits understanding and communication.  There is no type-safety and ownership is not enforced making memory leaks common occurrences.

	Iteration
	Quick Summary: ObjectWindows provides convenient invariant iterators for its containers. MFC still uses the clumsy, non-object-oriented first, next style of iteration.


	// create two short-hand types
	typedef TSVectorImp<string> vector;
	typedef TSVectorIterator<string> iterator;
	vector names;
	// add some names to the container
	numbers.Add( string("Albert") );
	numbers.Add( string("Victoria") );
	// ...
	// iterate over the container, and print out the contents
	iterator iter(vector);
	while (iter)
	os << iter++;
	Iteration with MFC

	CNameList myList; // assume CNameList contains CString pointers
	// get the first item in the list
	POSITION pos = myList.GetHeadPosition();
	// iterate over all the list elements
	while (pos) {
	CString* pName = (CString*) myList.GetNext(pos);
	// do something with the CString ...
	}
	CMapStringToString couples; // the map associates CStrings to CStrings
	POSITION pos = couples.GetStartPosition();
	while (pos) {
	CString* husband;
	CString* wife;
	couples.GetNextAssoc(pos, husband, wife);
	// use the two CString values...
	}
	Streamable Objects
	Quick Summary: ObjectWindows provides an object-oriented versus a C-style approach to persistent objects. The ObjectWindows approach is simple and uses the familiar C++ streams constructs. MFC's persistent objects are further limited to disk files only and use a non-standard serialization approach.
	The ObjectWindows Approach
	Quick Summary: ObjectWindows persistent objects act just like C++ streams making them familiar and standard. They also support in-memory streams not just disk files.


	TMyData myData; // an arbitrary object that supports persistence
	// create the output stream
	ofpstream os("DATA.BIN");
	// stream the object out
	os << myData;
	// create a temporary "empty" object
	TMyData myData(streamableInit);
	// open the input stream
	ifpstream is("DATA.BIN");
	// stream the object in
	is >> myData;
	TWindow* window = new TWindow(NULL, "");
	strstreambuf buffer;
	// stream the object out
	opstream out(&buffer);
	out << window;
	// stream the object back in
	ipstream in(&buffer);
	TWindow* newWindow;
	in >> newWindow;
	The MFC Approach
	Quick Summary: MFC's serialization is complex, doesn't user standard stream constructs and is limited to disk files.


	void CMyType::Serialize(CArchive& ar)
	{
	if (ar.IsStoring() ) {
	// write the object to the archive
	}
	else {
	// read the object
	}
	}
	// create the archive
	CFile myFile;
	myFile.Open("DATA.BIN", CFile::modeWrite);
	CArchive ar(&myFile, CArchive::store);
	// stream an object out
	CMyType myType; // assume CMyType is serializable
	ar << myType;
	// create the archive
	CFile myFile;
	myFile.Open("DATA.BIN", CFile::modeRead);
	CArchive ar(&myFile, CArchive::load);
	// stream an object in
	CMyType myType; // assume CMyType is serializable
	ar >> myType;
	Clipboard Encapsulation
	Quick Summary: ObjectWindows supplies clipboard support, whereas MFC does not.

	void TMyindow::CmCopy()
	{
	// create the clipboard object
	TClipboard clipboard;
	
	// create a TBitmap object
	TBitmap myBitmap(...);
	// move the bitmap to the clipboard
	if (clipboard.EmptyClipboard() )
	TBitmap(myBitmap).ToClipboard(clipboard);
	// we're done, destructor automatically closes
	}
	void TMyWindow::CmPaste()
	{
	TClipboard clipboard;
	if (!clipboard) return;
	TBitmap* myBitmap;
	if (clipboard.IsClipboardFormatAvailable(CF_BITMAP))
	myBitmap = new TBitmap(TBitmap(clipboard) );
	}
	Diagnostics and Debugging
	Quick Summary: ObjectWindows provides a rich and extendible set of diagnostics, where MFC's diagnostics are limited.  ObjectWindows lets you create multiple levels of diagnostic messages greatly aiding in the debugging process.  These diagnostics can be interactively modified at run time, providing further flexibility during testing.

	#define __DEBUG 1
	// setup a diagnostic group for special conditions
	DIAG_DEFINE_GROUP_INIT(ObjectWindows_INI, MyGroup, 1, 0);
	void TMyWindow::SetupWindow()
	{
	TRACEX(MyGroup, 2, "Entering TMyWindow::SetupWindow()");
	TMyWindow::SetupWindow();
	// do special processing
	TRACEX(MyGroup, 2, "Beginning special processing");
	}
	int value = 1;
	float number = 3.14;
	TRACEX(MyGroup, 2, "The value is " << value << "and the number is " << number);
	#ifdef _DEBUG
	afxDump("Dump this");
	#endif
	OLE 2.0 Encapsulation
	Quick Summary: To help implement OLE 2.0 applications, MFC 2.5 encapsulates various interfaces of OLE 2.0 into existing or new MFC 2.5 classes. Developers are only required to fill in a handful of overridable methods in those classes through inheritance to obtain OLE 2.0 features. OWL 2.0 does not yet include an encapsulation of OLE 2.0.
	OLE 2.0 Visual Editing Classes
	Quick Summary: MFC 2.5 has added OLE 2.0 visual editing classes that help build visual editing servers, containers or both.

	OLE 2.0 Automation Classes
	Quick Summary: MFC 2.5 has added OLE 2.0 automation classes that help expose member functions and variables of C++ classes to other applications via OLE automation.


	Database Encapsulation
	Quick Summary: MFC 2.5 has added a thin layer of classes to support database application development.
	Accessing Data Sources
	Quick Summary: MFC 2.5 now provides classes for accessing ODBC data sources.

	Database Forms
	Quick Summary: MFC 2.5 has a CRecordView class that supports form design which is then used with data exchange to transfer data to and from some database record.


	Conversion
	MFC-ObjectWindows conversion guide
	General Windows
	Dialog boxes and Child Controls
	GDI Operations
	Containers
	Persistence

	Conclusion

